Low complexity speaker independent command word recognition in car environments

S. Riis, O. Viikki
{"title":"Low complexity speaker independent command word recognition in car environments","authors":"S. Riis, O. Viikki","doi":"10.1109/ICASSP.2000.862089","DOIUrl":null,"url":null,"abstract":"In this paper we compare a standard HMM based recognizer to a highly parameter efficient hybrid denoted hidden neural network (HNN). The comparison was done on a speaker independent command word recognition task aimed at car hands-free applications. Monophone based HMM and HNN recognizers were initially trained on clean Wall Street Journal British English data. Evaluation of these baseline models on noisy car speech data indicated superior performance of the HMMs. After smoothing to the car environment, however, an HNN with 28k parameters provided a relative error rate reduction of 23-53% over HMMs containing 21k-168k parameters. Due to the low number of parameters in the HNNs, they have a real-time decoding complexity 2-4 times below that of comparable HMMs. The low memory and computational requirements of the HNN makes it particularly attractive for implementation on portable commercial hardware like mobile phones and personal digital assistants.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"314 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.862089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In this paper we compare a standard HMM based recognizer to a highly parameter efficient hybrid denoted hidden neural network (HNN). The comparison was done on a speaker independent command word recognition task aimed at car hands-free applications. Monophone based HMM and HNN recognizers were initially trained on clean Wall Street Journal British English data. Evaluation of these baseline models on noisy car speech data indicated superior performance of the HMMs. After smoothing to the car environment, however, an HNN with 28k parameters provided a relative error rate reduction of 23-53% over HMMs containing 21k-168k parameters. Due to the low number of parameters in the HNNs, they have a real-time decoding complexity 2-4 times below that of comparable HMMs. The low memory and computational requirements of the HNN makes it particularly attractive for implementation on portable commercial hardware like mobile phones and personal digital assistants.
汽车环境下低复杂度独立于说话人的命令词识别
在本文中,我们比较了一种基于标准HMM的识别器和一种参数高效的混合隐式神经网络(HNN)。在针对汽车免提应用程序的独立于扬声器的命令词识别任务中进行了比较。基于单声道的HMM和HNN识别器最初是在干净的《华尔街日报》英式英语数据上训练的。在有噪声的汽车语音数据上对这些基线模型的评估表明hmm具有优越的性能。然而,在平滑到汽车环境之后,具有28k个参数的HNN比包含21k-168k个参数的hmm的相对错误率降低了23-53%。由于hnn中的参数数量较少,它们的实时解码复杂度比同类hmm低2-4倍。HNN的低内存和计算需求使其对便携式商业硬件(如移动电话和个人数字助理)的实现特别有吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信