Source number estimation in shallow ocean by acoustic vector sensor array using Gerschgorin disks

N. S. Kumar, G. V. Anand, S. Roul, Dibu John Philip
{"title":"Source number estimation in shallow ocean by acoustic vector sensor array using Gerschgorin disks","authors":"N. S. Kumar, G. V. Anand, S. Roul, Dibu John Philip","doi":"10.1109/ISDA.2012.6416517","DOIUrl":null,"url":null,"abstract":"Accurate estimation of the number of sources plays a crucial role in the source localization and direction-of-arrival estimation problems. In several applications like coastal surveillance and harbour defence, source number estimation has to be performed in a shallow ocean environment. In this paper, the Gerschgorin disk estimator (GDE) method of source number estimation in an unbounded medium is extended for operation in a shallow oceanic waveguide. Classical methods of source number estimation such as Akaike information criterion (AIC) and minimum description length (MDL) require (1) good estimates of the eigenvalues of the spectral correlation matrix, and (2) the assumption of white Gaussian noise to be valid. The GDE method does not suffer from these limitations. A theoretical formulation of the GDE method in a shallow ocean is presented in this paper for acoustic vector sensor (AVS) and acoustic pressure sensor (APS) arrays. Simulation results are then presented to illustrate the advantages of the GDE method and the superior performance of the AVS array in a shallow ocean environment.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Accurate estimation of the number of sources plays a crucial role in the source localization and direction-of-arrival estimation problems. In several applications like coastal surveillance and harbour defence, source number estimation has to be performed in a shallow ocean environment. In this paper, the Gerschgorin disk estimator (GDE) method of source number estimation in an unbounded medium is extended for operation in a shallow oceanic waveguide. Classical methods of source number estimation such as Akaike information criterion (AIC) and minimum description length (MDL) require (1) good estimates of the eigenvalues of the spectral correlation matrix, and (2) the assumption of white Gaussian noise to be valid. The GDE method does not suffer from these limitations. A theoretical formulation of the GDE method in a shallow ocean is presented in this paper for acoustic vector sensor (AVS) and acoustic pressure sensor (APS) arrays. Simulation results are then presented to illustrate the advantages of the GDE method and the superior performance of the AVS array in a shallow ocean environment.
基于Gerschgorin磁盘的声矢量传感器阵列估计浅海声源数
源数的准确估计在源定位和到达方向估计问题中起着至关重要的作用。在海岸监视和港口防御等应用中,源数估计必须在浅海环境中进行。本文将无界介质中估计源数的格schgorin盘估计方法推广到浅海波导中。经典的信源数估计方法如赤池信息准则(AIC)和最小描述长度(MDL)要求:(1)谱相关矩阵的特征值估计良好;(2)高斯白噪声假设有效。GDE方法没有这些限制。本文提出了一种浅海声矢量传感器(AVS)和声压传感器(APS)阵列GDE方法的理论公式。仿真结果说明了GDE方法的优越性以及AVS阵列在浅海环境下的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信