Weierstrass approximations by Lukasiewicz formulas with one quantified variable

S. Aguzzoli, D. Mundici
{"title":"Weierstrass approximations by Lukasiewicz formulas with one quantified variable","authors":"S. Aguzzoli, D. Mundici","doi":"10.1109/ISMVL.2001.924596","DOIUrl":null,"url":null,"abstract":"The logic /spl exist/L of continuous piecewise linear functions with rational coefficients has enough expressive power to formalize Weierstrass approximation theorem. Thus, up to any prescribed error; every continuous (control) function can be approximated by a formula of /spl exist/L. As shown in this paper, /spl exist/L is just infinite-valued Lukasiewicz propositional logic with one quantified propositional variable. We evaluate the computational complexity of the decision problem for /spl exist/L. Enough background material is provided for all readers wishing to acquire a deeper understanding of the rapidly growing literature on Lukasiewicz propositional logic and its applications.","PeriodicalId":297353,"journal":{"name":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 31st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2001.924596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The logic /spl exist/L of continuous piecewise linear functions with rational coefficients has enough expressive power to formalize Weierstrass approximation theorem. Thus, up to any prescribed error; every continuous (control) function can be approximated by a formula of /spl exist/L. As shown in this paper, /spl exist/L is just infinite-valued Lukasiewicz propositional logic with one quantified propositional variable. We evaluate the computational complexity of the decision problem for /spl exist/L. Enough background material is provided for all readers wishing to acquire a deeper understanding of the rapidly growing literature on Lukasiewicz propositional logic and its applications.
带一个量化变量的Lukasiewicz公式的Weierstrass近似
具有有理系数的连续分段线性函数的逻辑/spl存在/L具有足够的表达能力来形式化Weierstrass近似定理。因此,不超过任何规定的误差;每个连续(控制)函数都可以用/spl存在/L的公式来近似。如本文所示,/spl存在/L只是具有一个量化命题变量的无限值Lukasiewicz命题逻辑。我们评估了/spl存在/L的决策问题的计算复杂度。足够的背景材料,为所有读者希望获得一个更深入的理解快速增长的文献关于Lukasiewicz命题逻辑及其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信