Graph-Based Semi-supervised Learning with Adaptive Similarity Estimation

Xianchao Zhang, Yansheng Jiang, Wenxin Liang, Xin Han
{"title":"Graph-Based Semi-supervised Learning with Adaptive Similarity Estimation","authors":"Xianchao Zhang, Yansheng Jiang, Wenxin Liang, Xin Han","doi":"10.1109/ICDM.2010.30","DOIUrl":null,"url":null,"abstract":"Graph-based semi-supervised learning algorithms have attracted a lot of attention. Constructing a good graph is playing an essential role for all these algorithms. Many existing graph construction methods(e.g. Gaussian Kernel etc.) require user input parameter, which is hard to configure manually. In this paper, we propose a parameter-free similarity measure Adaptive Similarity Estimation (ASE), which constructs the graph by adaptively optimizing linear combination of its neighbors. Experimental results show the effectiveness of our proposed method.","PeriodicalId":294061,"journal":{"name":"2010 IEEE International Conference on Data Mining","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2010.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Graph-based semi-supervised learning algorithms have attracted a lot of attention. Constructing a good graph is playing an essential role for all these algorithms. Many existing graph construction methods(e.g. Gaussian Kernel etc.) require user input parameter, which is hard to configure manually. In this paper, we propose a parameter-free similarity measure Adaptive Similarity Estimation (ASE), which constructs the graph by adaptively optimizing linear combination of its neighbors. Experimental results show the effectiveness of our proposed method.
基于图的自适应相似度估计半监督学习
基于图的半监督学习算法引起了人们的广泛关注。构造一个好的图对于所有这些算法都起着至关重要的作用。许多现有的图构造方法(例如;高斯核等)需要用户输入参数,这是很难手动配置。本文提出了一种无参数的相似度度量自适应相似度估计(Adaptive similarity Estimation, ASE),该方法通过自适应优化相邻图的线性组合来构造图。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信