A voice activity detection algorithm with sub-band detection based on time-frequency characteristics of mandarin

Yinfeng Wang, S. Huang, Ying Wei
{"title":"A voice activity detection algorithm with sub-band detection based on time-frequency characteristics of mandarin","authors":"Yinfeng Wang, S. Huang, Ying Wei","doi":"10.1109/CISP.2013.6743871","DOIUrl":null,"url":null,"abstract":"Voice activity detection algorithms are widely used in the areas of voice compression, speech synthesis, speech recognition, speech enhancement, and etc. In this paper, an efficient voice activity detection algorithm with sub-band detection based on time-frequency characteristics of mandarin is proposed. The proposed sub-band detection consists of two parts: crosswise detection and lengthwise detection. Energy detection and pitch detection are in the range of considerations. For a better performance, double-threshold criterion is used to reduce the misjudgment rate of the detection. Performance evaluation is based on six noise environments with different SNRs. Experiment results indicate that the proposed algorithm can detect the area of voice effectively in non-stationary environment and low SNR environment and has the potential to progress.","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6743871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Voice activity detection algorithms are widely used in the areas of voice compression, speech synthesis, speech recognition, speech enhancement, and etc. In this paper, an efficient voice activity detection algorithm with sub-band detection based on time-frequency characteristics of mandarin is proposed. The proposed sub-band detection consists of two parts: crosswise detection and lengthwise detection. Energy detection and pitch detection are in the range of considerations. For a better performance, double-threshold criterion is used to reduce the misjudgment rate of the detection. Performance evaluation is based on six noise environments with different SNRs. Experiment results indicate that the proposed algorithm can detect the area of voice effectively in non-stationary environment and low SNR environment and has the potential to progress.
基于普通话时频特性的子带检测语音活动算法
语音活动检测算法广泛应用于语音压缩、语音合成、语音识别、语音增强等领域。本文提出了一种基于普通话时频特性的子带检测语音活动的高效检测算法。提出的子带检测包括两部分:横向检测和纵向检测。能量检测和基音检测都在考虑范围内。为了获得更好的检测性能,采用双阈值准则来降低检测的误判率。性能评估基于6种不同信噪比的噪声环境。实验结果表明,该算法可以在非平稳环境和低信噪比环境下有效检测语音区域,具有发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信