Tree-based Read-only Data Chunks for NVRAM Programming

Kumud Bhandari, Vivek Sarkar
{"title":"Tree-based Read-only Data Chunks for NVRAM Programming","authors":"Kumud Bhandari, Vivek Sarkar","doi":"10.1145/3292533.3292535","DOIUrl":null,"url":null,"abstract":"As the DRAM technology is fast reaching a scaling threshold, emerging non-volatile, byte-addressable memory (NVRAM) is expected to supplement and eventually replace DRAM. Future computing systems are anticipated to have a large amount of NVRAM, possibly spanning across more than one coherence domain. Furthermore, taking advantage of in-place persistence provided by the NVRAM in future systems requires a strategy to prevent tolerated failures (e.g. power failure) from leaving persistent data in an incoherent state. A fresh look at memory management approaches across the system stack is required to fully utilize future NVRAM. In this paper, we carefully assess the NVRAM-related memory access and management challenges, its implication to application level programming, and examine the suitability of tree-based read-only data chunks to NVRAM programming.","PeriodicalId":195082,"journal":{"name":"Proceedings of the Sixth Workshop on Data-Flow Execution Models for Extreme Scale Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth Workshop on Data-Flow Execution Models for Extreme Scale Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292533.3292535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the DRAM technology is fast reaching a scaling threshold, emerging non-volatile, byte-addressable memory (NVRAM) is expected to supplement and eventually replace DRAM. Future computing systems are anticipated to have a large amount of NVRAM, possibly spanning across more than one coherence domain. Furthermore, taking advantage of in-place persistence provided by the NVRAM in future systems requires a strategy to prevent tolerated failures (e.g. power failure) from leaving persistent data in an incoherent state. A fresh look at memory management approaches across the system stack is required to fully utilize future NVRAM. In this paper, we carefully assess the NVRAM-related memory access and management challenges, its implication to application level programming, and examine the suitability of tree-based read-only data chunks to NVRAM programming.
基于树的只读数据块NVRAM编程
随着DRAM技术迅速达到规模化门槛,新兴的非易失性、字节可寻址存储器(NVRAM)有望补充并最终取代DRAM。未来的计算系统预计将拥有大量的NVRAM,可能跨越多个相干域。此外,在未来的系统中利用NVRAM提供的就地持久性需要一种策略来防止可容忍的故障(例如电源故障)使持久性数据处于不一致的状态。为了充分利用未来的NVRAM,需要重新审视跨系统堆栈的内存管理方法。在本文中,我们仔细评估了NVRAM相关的内存访问和管理挑战,其对应用程序级编程的影响,并检查了基于树的只读数据块对NVRAM编程的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信