Computation of Multi-Scenario Hydropower Equivalents Using Particle Swarm Optimization

Evelin Blom, L. Söder
{"title":"Computation of Multi-Scenario Hydropower Equivalents Using Particle Swarm Optimization","authors":"Evelin Blom, L. Söder","doi":"10.1109/EEEIC/ICPSEurope49358.2020.9160649","DOIUrl":null,"url":null,"abstract":"Simulation of large hydro-thermal power systems requires several extensive simplifications and model reductions. For hydropower systems with several interconnected power stations, these reductions can be particularly challenging and are denoted Equivalent models. The purpose of the Equivalent model is to mimic a more detailed hydropower model, while decreasing computation time, to be used in larger power system models. In this paper different Equivalent models for hydropower systems have been computed with a novel approach using a Particle swarm optimization-algorithm and are evaluated with respect to accuracy in hourly and total power generation as well as computation time. For each of the Equivalent models, computation time is decreased with over 99.99 % and the difference in power production is less than 11% compared to a more detailed model.","PeriodicalId":215332,"journal":{"name":"2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC/ICPSEurope49358.2020.9160649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Simulation of large hydro-thermal power systems requires several extensive simplifications and model reductions. For hydropower systems with several interconnected power stations, these reductions can be particularly challenging and are denoted Equivalent models. The purpose of the Equivalent model is to mimic a more detailed hydropower model, while decreasing computation time, to be used in larger power system models. In this paper different Equivalent models for hydropower systems have been computed with a novel approach using a Particle swarm optimization-algorithm and are evaluated with respect to accuracy in hourly and total power generation as well as computation time. For each of the Equivalent models, computation time is decreased with over 99.99 % and the difference in power production is less than 11% compared to a more detailed model.
基于粒子群算法的多情景水电当量计算
大型水火发电系统的仿真需要大量的简化和模型缩减。对于具有几个相互连接的发电站的水力发电系统,这些减少可能特别具有挑战性,并表示为等效模型。等效模型的目的是模拟更详细的水电模型,同时减少计算时间,以便在更大的电力系统模型中使用。本文用粒子群优化算法对不同的水电系统等效模型进行了计算,并从小时发电量和总发电量的精度以及计算时间等方面进行了评价。对于每个等效模型,与更详细的模型相比,计算时间减少了99.99%以上,功率产生的差异小于11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信