Identifying Code-switching in Arabizi

Safaa Shehadi, S. Wintner
{"title":"Identifying Code-switching in Arabizi","authors":"Safaa Shehadi, S. Wintner","doi":"10.18653/v1/2022.wanlp-1.18","DOIUrl":null,"url":null,"abstract":"We describe a corpus of social media posts that include utterances in Arabizi, a Roman-script rendering of Arabic, mixed with other languages, notably English, French, and Arabic written in the Arabic script. We manually annotated a subset of the texts with word-level language IDs; this is a non-trivial task due to the nature of mixed-language writing, especially on social media. We developed classifiers that can accurately predict the language ID tags. Then, we extended the word-level predictions to identify sentences that include Arabizi (and code-switching), and applied the classifiers to the raw corpus, thereby harvesting a large number of additional instances. The result is a large-scale dataset of Arabizi, with precise indications of code-switching between Arabizi and English, French, and Arabic.","PeriodicalId":355149,"journal":{"name":"Workshop on Arabic Natural Language Processing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Arabic Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.wanlp-1.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We describe a corpus of social media posts that include utterances in Arabizi, a Roman-script rendering of Arabic, mixed with other languages, notably English, French, and Arabic written in the Arabic script. We manually annotated a subset of the texts with word-level language IDs; this is a non-trivial task due to the nature of mixed-language writing, especially on social media. We developed classifiers that can accurately predict the language ID tags. Then, we extended the word-level predictions to identify sentences that include Arabizi (and code-switching), and applied the classifiers to the raw corpus, thereby harvesting a large number of additional instances. The result is a large-scale dataset of Arabizi, with precise indications of code-switching between Arabizi and English, French, and Arabic.
识别阿拉伯语的语码转换
我们描述了一个社交媒体帖子的语料库,其中包括阿拉伯语的话语,阿拉伯语是阿拉伯语的罗马文字翻译,与其他语言混合,特别是英语,法语和用阿拉伯语书写的阿拉伯语。我们用单词级语言id手动标注文本子集;由于混合语言写作的性质,这是一项非常重要的任务,尤其是在社交媒体上。我们开发了可以准确预测语言ID标签的分类器。然后,我们扩展了单词级预测,以识别包含阿拉伯语(和代码切换)的句子,并将分类器应用于原始语料库,从而收获了大量额外的实例。结果是一个大规模的阿拉伯语数据集,精确地显示了阿拉伯语与英语、法语和阿拉伯语之间的代码转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信