Collecting Representative Social Media Samples from a Search Engine by Adaptive Query Generation

Virgile Landeiro, A. Culotta
{"title":"Collecting Representative Social Media Samples from a Search Engine by Adaptive Query Generation","authors":"Virgile Landeiro, A. Culotta","doi":"10.1145/3341161.3342924","DOIUrl":null,"url":null,"abstract":"Studies in computational social science often require collecting data about users via a search engine interface: a list of keywords is provided as a query to the interface and documents matching this query are returned. The validity of a study will hence critically depend on the representativeness of the data returned by the search engine. In this paper, we develop a multi-objective approach to build queries yielding documents that are both relevant to the study and representative of the larger population of documents. We then specify measures to evaluate the relevance and the representativeness of documents retrieved by a query system. Using these measures, we experiment on three real-world datasets and show that our method outperforms baselines commonly used to solve this data collection problem.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Studies in computational social science often require collecting data about users via a search engine interface: a list of keywords is provided as a query to the interface and documents matching this query are returned. The validity of a study will hence critically depend on the representativeness of the data returned by the search engine. In this paper, we develop a multi-objective approach to build queries yielding documents that are both relevant to the study and representative of the larger population of documents. We then specify measures to evaluate the relevance and the representativeness of documents retrieved by a query system. Using these measures, we experiment on three real-world datasets and show that our method outperforms baselines commonly used to solve this data collection problem.
通过自适应查询生成从搜索引擎中收集具有代表性的社交媒体样本
计算社会科学的研究通常需要通过搜索引擎界面收集有关用户的数据:提供关键字列表作为对界面的查询,并返回与该查询匹配的文档。因此,研究的有效性将严重依赖于搜索引擎返回的数据的代表性。在本文中,我们开发了一种多目标方法来构建查询,生成的文档既与研究相关,又代表更大的文档群体。然后,我们指定度量来评估查询系统检索的文档的相关性和代表性。使用这些度量,我们在三个真实世界的数据集上进行了实验,并表明我们的方法优于通常用于解决此数据收集问题的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信