Key Communication Techniques for Underground Sensor Networks

Zhi Sun, I. Akyildiz
{"title":"Key Communication Techniques for Underground Sensor Networks","authors":"Zhi Sun, I. Akyildiz","doi":"10.1561/1300000034","DOIUrl":null,"url":null,"abstract":"Wireless Underground Sensor Networks (WUSNs) are the networks of wireless sensors that operate in the underground soil medium. In this monograph, to realize reliable and efficient WUSNs, two enabling techniques are developed to address the challenges brought by the underground soil medium, including the EM wave-based WUSNs and the MI-based WUSNs. For EM wave-based WUSNs, the heterogeneous network architecture and dynamic connectivity are investigated based on a comprehensive channel model in soil medium. Then a spatio-temporal correlation-based data collection scheme is developed to reduce the sensor density while keeping high monitoring accuracy. For MI-based WUSNs, the MI channel is first analytically characterized. Then based on the MI channel model, the MI waveguide technique is developed in order to enlarge the underground transmission range. After that, the optimal deployment algorithms for MI waveguides in WUSNs are analyzed to construct the WUSNs with high reliability and low costs. Finally, the mathematical models are developed to evaluate the channel and network capacities of MI-based WUSNs. This monograph provides principles and guidelines for WUSN designs.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1300000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Wireless Underground Sensor Networks (WUSNs) are the networks of wireless sensors that operate in the underground soil medium. In this monograph, to realize reliable and efficient WUSNs, two enabling techniques are developed to address the challenges brought by the underground soil medium, including the EM wave-based WUSNs and the MI-based WUSNs. For EM wave-based WUSNs, the heterogeneous network architecture and dynamic connectivity are investigated based on a comprehensive channel model in soil medium. Then a spatio-temporal correlation-based data collection scheme is developed to reduce the sensor density while keeping high monitoring accuracy. For MI-based WUSNs, the MI channel is first analytically characterized. Then based on the MI channel model, the MI waveguide technique is developed in order to enlarge the underground transmission range. After that, the optimal deployment algorithms for MI waveguides in WUSNs are analyzed to construct the WUSNs with high reliability and low costs. Finally, the mathematical models are developed to evaluate the channel and network capacities of MI-based WUSNs. This monograph provides principles and guidelines for WUSN designs.
地下传感器网络关键通信技术
无线地下传感器网络(WUSNs)是在地下土壤介质中工作的无线传感器网络。为了实现可靠、高效的WUSNs,本文提出了两种使能技术,即基于电磁波的WUSNs和基于mi的WUSNs,以应对地下土壤介质带来的挑战。对于基于电磁波的WUSNs,基于土壤介质中综合通道模型研究了异构网络结构和动态连通性。在此基础上,提出了一种基于时空相关性的数据采集方案,在降低传感器密度的同时保持较高的监测精度。对于基于MI的WUSNs,首先对MI通道进行解析表征。在此基础上,提出了扩大地下传输范围的微波波导技术。在此基础上,分析了MI波导在WUSNs中的最优部署算法,以构建高可靠性、低成本的WUSNs。最后,建立了数学模型来评估基于mi的WUSNs的信道和网络容量。本专著提供了WUSN设计的原则和指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信