Accurate estimation of the signal baseline in DNA chromatograms

L. Andrade, E. Manolakos
{"title":"Accurate estimation of the signal baseline in DNA chromatograms","authors":"L. Andrade, E. Manolakos","doi":"10.1109/NNSP.2002.1030015","DOIUrl":null,"url":null,"abstract":"Estimating accurately the varying baseline level in different parts of a DNA chromatogram is a challenging and important problem for accurate base-calling. We are formulating the problem in a statistical learning framework and propose an Expectation-Maximization algorithm for its solution. In addition we also present a faster, iterative histogram based method for estimating the background of the signal in small size windows. The two methods can be combined with regression techniques to correct the baseline in all regions of the chromatogram and are shown to work well even in areas of low SNR. By improving the separation of clusters, baseline correction actions reduce the classification errors when using the BEM base-caller developed in our group.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Estimating accurately the varying baseline level in different parts of a DNA chromatogram is a challenging and important problem for accurate base-calling. We are formulating the problem in a statistical learning framework and propose an Expectation-Maximization algorithm for its solution. In addition we also present a faster, iterative histogram based method for estimating the background of the signal in small size windows. The two methods can be combined with regression techniques to correct the baseline in all regions of the chromatogram and are shown to work well even in areas of low SNR. By improving the separation of clusters, baseline correction actions reduce the classification errors when using the BEM base-caller developed in our group.
DNA色谱中信号基线的准确估计
准确估计DNA色谱中不同部分的变化基线水平是一个具有挑战性和重要的问题。我们在一个统计学习框架中阐述了这个问题,并提出了一个期望最大化算法来解决这个问题。此外,我们还提出了一种更快的基于迭代直方图的方法来估计小尺寸窗口中的信号背景。这两种方法可以与回归技术相结合,以纠正色谱图所有区域的基线,并且即使在低信噪比的区域也能很好地工作。通过改进聚类的分离,基线校正操作在使用本小组开发的BEM基调用者时减少了分类错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信