An Investigation Into the Mathematics of Decryption Techniques in RSA Encryption, With an Implementation in Python

Spring 2021 Pub Date : 2021-07-31 DOI:10.48091/gsr.v1i2.18
Sofia Flynn
{"title":"An Investigation Into the Mathematics of Decryption Techniques in RSA Encryption, With an Implementation in Python","authors":"Sofia Flynn","doi":"10.48091/gsr.v1i2.18","DOIUrl":null,"url":null,"abstract":"This study explores the mathematics of two different techniques that can be used to access the decryption key in RSA encryption including semi-prime factorization and a logarithmic method. The study then presents a Python program, written by the author, that automates the calculations for either of the decryption techniques and also calculates the number of iterations required to determine the decryption key in either circumstance. Most importantly, the program utilizes only values of the RSA encryption algorithm that would be made publicly available in actual circumstances to calculate the decryption key so as to mimic real-life occurrences with as much integrity and accuracy as possible.","PeriodicalId":201345,"journal":{"name":"Spring 2021","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48091/gsr.v1i2.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the mathematics of two different techniques that can be used to access the decryption key in RSA encryption including semi-prime factorization and a logarithmic method. The study then presents a Python program, written by the author, that automates the calculations for either of the decryption techniques and also calculates the number of iterations required to determine the decryption key in either circumstance. Most importantly, the program utilizes only values of the RSA encryption algorithm that would be made publicly available in actual circumstances to calculate the decryption key so as to mimic real-life occurrences with as much integrity and accuracy as possible.
RSA加密中解密技术的数学研究,用Python实现
本研究探讨了可用于访问RSA加密中的解密密钥的两种不同技术的数学,包括半素数分解和对数方法。然后,该研究提出了一个由作者编写的Python程序,该程序可以自动计算两种解密技术中的任何一种,并计算在两种情况下确定解密密钥所需的迭代次数。最重要的是,该程序只使用在实际情况下公开可用的RSA加密算法的值来计算解密密钥,以便以尽可能多的完整性和准确性模拟现实生活中的事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信