Multi-modal AI Systems for Human and Animal Pose Estimation in Challenging Conditions

Qianyi Deng
{"title":"Multi-modal AI Systems for Human and Animal Pose Estimation in Challenging Conditions","authors":"Qianyi Deng","doi":"10.1109/SMARTCOMP58114.2023.00060","DOIUrl":null,"url":null,"abstract":"This paper explores the development of multi-modal AI systems for pose estimation in challenging conditions for both humans and animals. Existing single-modality approaches struggle in challenging scenarios such as emergency response and wildlife observation due to factors like smoke, low light, obstacles, and long-distance observations. To address these challenges, this research proposes integrating multiple sensor modalities and leveraging the strengths of different sensors to enhance accuracy and robustness in pose estimation.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the development of multi-modal AI systems for pose estimation in challenging conditions for both humans and animals. Existing single-modality approaches struggle in challenging scenarios such as emergency response and wildlife observation due to factors like smoke, low light, obstacles, and long-distance observations. To address these challenges, this research proposes integrating multiple sensor modalities and leveraging the strengths of different sensors to enhance accuracy and robustness in pose estimation.
挑战性条件下人类和动物姿态估计的多模态人工智能系统
本文探讨了在人类和动物具有挑战性的条件下进行姿态估计的多模态人工智能系统的发展。由于烟雾、低光、障碍物和远距离观测等因素,现有的单模态方法在应急响应和野生动物观测等具有挑战性的情况下难以实现。为了解决这些挑战,本研究提出了集成多种传感器模式并利用不同传感器的优势来提高姿态估计的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信