Document clustering using dirichlet process mixture model of von Mises-Fisher distributions

N. K. Anh, Tam The Nguyen, Ngo Van Linh
{"title":"Document clustering using dirichlet process mixture model of von Mises-Fisher distributions","authors":"N. K. Anh, Tam The Nguyen, Ngo Van Linh","doi":"10.1145/2542050.2542079","DOIUrl":null,"url":null,"abstract":"Document clustering has become an increasingly important technique for unsupervised document organization, automatic topic extraction, and fast information retrieval or filtering. This paper proposes a Dirichlet process mixture (DPM) model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. We have developed a mean-field variational inference algorithm for the DPM model of vMFs that is applied to clustering text documents. Using this model, the number of clusters is determined automatically after the clustering process rather than pre-estimated. We conducted extensive experiments to evaluate the proposed approach on a large number of high dimensional text datasets. Empirical experimental results over NMI (Normalized Mutual Information) and Purity evaluation measures demonstrate that our approach outperforms the four state-of-the-art clustering algorithms.","PeriodicalId":246033,"journal":{"name":"Proceedings of the 4th Symposium on Information and Communication Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Symposium on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2542050.2542079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Document clustering has become an increasingly important technique for unsupervised document organization, automatic topic extraction, and fast information retrieval or filtering. This paper proposes a Dirichlet process mixture (DPM) model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. We have developed a mean-field variational inference algorithm for the DPM model of vMFs that is applied to clustering text documents. Using this model, the number of clusters is determined automatically after the clustering process rather than pre-estimated. We conducted extensive experiments to evaluate the proposed approach on a large number of high dimensional text datasets. Empirical experimental results over NMI (Normalized Mutual Information) and Purity evaluation measures demonstrate that our approach outperforms the four state-of-the-art clustering algorithms.
利用von Mises-Fisher分布的dirichlet过程混合模型进行文档聚类
文档聚类已成为无监督文档组织、自动主题提取和快速信息检索或过滤的重要技术。本文提出了一种基于von Mises-Fisher (vMF)分布的Dirichlet过程混合(DPM)模型来聚类定向数据,这是分布在单位超球上的数据自然产生的。我们开发了一种用于聚类文本文档的vmf的DPM模型的平均场变分推理算法。使用该模型,簇的数量是在聚类过程后自动确定的,而不是预先估计。我们在大量高维文本数据集上进行了广泛的实验来评估所提出的方法。在NMI(归一化互信息)和纯度评估措施上的经验实验结果表明,我们的方法优于四种最先进的聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信