{"title":"Testing equalities of multiplicative representations in polynomial time","authors":"Guoqiang Ge","doi":"10.1109/SFCS.1993.366845","DOIUrl":null,"url":null,"abstract":"For multiplicative representations /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ and /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/ where /spl alpha//sub i/, /spl beta//sub j/ are non-zero elements of some algebraic number field K and n/sub i/, m/sub j/ are rational integers, we present a deterministic polynomial time algorithm that decides whether /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ equals /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/. The running time of the algorithm is polynomial in the number of bits required to represent the number field K, the elements /spl alpha//sub i/, /spl beta//sub j/ and the integers n/sub i/, m/sub j/.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
For multiplicative representations /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ and /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/ where /spl alpha//sub i/, /spl beta//sub j/ are non-zero elements of some algebraic number field K and n/sub i/, m/sub j/ are rational integers, we present a deterministic polynomial time algorithm that decides whether /spl Pi//sub i=1//sup k//spl alpha//sub i//sup n(i)/ equals /spl Pi//sub j=1//sup l//spl beta//sub j//sup m(j)/. The running time of the algorithm is polynomial in the number of bits required to represent the number field K, the elements /spl alpha//sub i/, /spl beta//sub j/ and the integers n/sub i/, m/sub j/.<>