Sparse interpolation over finite fields via low-order roots of unity

A. Arnold, M. Giesbrecht, Daniel S. Roche
{"title":"Sparse interpolation over finite fields via low-order roots of unity","authors":"A. Arnold, M. Giesbrecht, Daniel S. Roche","doi":"10.1145/2608628.2608671","DOIUrl":null,"url":null,"abstract":"We present a new Monte Carlo algorithm for the interpolation of a straight-line program as a sparse polynomial f over an arbitrary finite field of size q. We assume a priori bounds D and T are given on the degree and number of terms of f. The approach presented in this paper is a hybrid of the diversified and recursive interpolation algorithms, the two previous fastest known probabilistic methods for this problem. By making effective use of the information contained in the coefficients themselves, this new algorithm improves on the bit complexity of previous methods by a \"soft-Oh\" factor of T, log D, or log q.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"16 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a new Monte Carlo algorithm for the interpolation of a straight-line program as a sparse polynomial f over an arbitrary finite field of size q. We assume a priori bounds D and T are given on the degree and number of terms of f. The approach presented in this paper is a hybrid of the diversified and recursive interpolation algorithms, the two previous fastest known probabilistic methods for this problem. By making effective use of the information contained in the coefficients themselves, this new algorithm improves on the bit complexity of previous methods by a "soft-Oh" factor of T, log D, or log q.
有限域上通过低阶单位根的稀疏插值
我们提出了一种新的蒙特卡罗算法,用于在任意大小为q的有限域上作为稀疏多项式f的直线程序的插值。我们假设在f的次数和项数上给出了先验界D和T。本文提出的方法是多样化和递归插值算法的混合,这是先前已知的两种最快的概率方法。通过有效地利用系数本身所包含的信息,这种新算法通过“软哦”因子T、log D或log q来提高以前方法的位复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信