Misbehavior detection system in VANETs using local traffic density

Jithin Zacharias, Sibylle B. Fröschle
{"title":"Misbehavior detection system in VANETs using local traffic density","authors":"Jithin Zacharias, Sibylle B. Fröschle","doi":"10.1109/VNC.2018.8628321","DOIUrl":null,"url":null,"abstract":"In this paper we explore a novel approach for misbehavior detection in Vehicular Ad-Hoc Networks (VANETs) using local traffic density. The approach is based on measuring local traffic density from two independent sensors and representing it as evidence for certain traffic situation. Dempster rule of combination is used for fusing together multiple pieces of evidence from reliable and unreliable sensors to detect the misbehavior. The approach is particularly suited to detect illusion attacks, which is still a challenge for vehicular communication. We motivate and discuss the approach and demonstrate its potential by an example scenario considering illusion attack.","PeriodicalId":335017,"journal":{"name":"2018 IEEE Vehicular Networking Conference (VNC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2018.8628321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we explore a novel approach for misbehavior detection in Vehicular Ad-Hoc Networks (VANETs) using local traffic density. The approach is based on measuring local traffic density from two independent sensors and representing it as evidence for certain traffic situation. Dempster rule of combination is used for fusing together multiple pieces of evidence from reliable and unreliable sensors to detect the misbehavior. The approach is particularly suited to detect illusion attacks, which is still a challenge for vehicular communication. We motivate and discuss the approach and demonstrate its potential by an example scenario considering illusion attack.
基于局域交通密度的VANETs不当行为检测系统
在本文中,我们探索了一种利用本地交通密度检测车辆自组织网络(VANETs)中不当行为的新方法。该方法基于两个独立的传感器测量局部交通密度,并将其表示为特定交通状况的证据。采用Dempster组合规则将来自可靠和不可靠传感器的多条证据融合在一起,以检测异常行为。这种方法特别适用于检测错觉攻击,这仍然是车辆通信的一个挑战。我们激励和讨论该方法,并通过考虑错觉攻击的示例场景展示其潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信