Rauch-Tung-Striebel high-degree cubature Kalman smoother

Bin Jia, M. Xin
{"title":"Rauch-Tung-Striebel high-degree cubature Kalman smoother","authors":"Bin Jia, M. Xin","doi":"10.1109/ACC.2013.6580205","DOIUrl":null,"url":null,"abstract":"In this paper, a new Rauch-Tung-Striebel type of nonlinear smoothing method is proposed based on a class of high-degree cubature rules. This high-degree cubature Kalman smoother generalizes the conventional third-degree cubature Kalman smoother and considerably improves its estimation accuracy. A target tracking problem is utilized to demonstrate the performance of this new smoother and compare it with other Gaussian approximation smoothers. It will be shown that the high-degree cubabure Kalman smoother outperforms the extended Kalman smoother, the unscented Kalman smoother, the third-degree cubature Kalman smoother, and maintains close performance to the Gauss-Hermite quadrature smoother with much less computational cost.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new Rauch-Tung-Striebel type of nonlinear smoothing method is proposed based on a class of high-degree cubature rules. This high-degree cubature Kalman smoother generalizes the conventional third-degree cubature Kalman smoother and considerably improves its estimation accuracy. A target tracking problem is utilized to demonstrate the performance of this new smoother and compare it with other Gaussian approximation smoothers. It will be shown that the high-degree cubabure Kalman smoother outperforms the extended Kalman smoother, the unscented Kalman smoother, the third-degree cubature Kalman smoother, and maintains close performance to the Gauss-Hermite quadrature smoother with much less computational cost.
Rauch-Tung-Striebel高度培养卡尔曼平滑
本文提出了一种新的基于一类高次稳态规则的Rauch-Tung-Striebel型非线性平滑方法。这种高次培养卡尔曼平滑对传统的三次培养卡尔曼平滑进行了推广,大大提高了其估计精度。利用目标跟踪问题验证了该平滑器的性能,并将其与其他高斯逼近平滑器进行了比较。高次立方卡尔曼平滑优于扩展卡尔曼平滑、无气味卡尔曼平滑和三次立方卡尔曼平滑,并保持接近高斯-埃尔米特正交平滑的性能,且计算成本更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信