Open Data and machine learning in the service of complementing municipal GIS inventory

Joel Martin Geda, L. Zentai, Andrea Pődör
{"title":"Open Data and machine learning in the service of complementing municipal GIS inventory","authors":"Joel Martin Geda, L. Zentai, Andrea Pődör","doi":"10.5194/ica-proc-5-6-2023","DOIUrl":null,"url":null,"abstract":"Abstract. In this study the authors investigated the possibilities to use open data and open software complemented with machine learning to enhance the content of municipal databases. In the study area in Székesfehérvár, a GIS system is used with approximately with 30 modules, although many are still missing. The authors prepared examine the easiest and most affordable methods to extract data to use in two future modules: Parking and Traffic Engineering module. In parking model along field survey, they used QGIS and OpenStreetMap, in the other module they used Google StreetView for defining the places of traffic signs and used machine learning to define the signposts. They found that the accuracy of creating the parking module is based on the completeness of the database and the field measurement method, in case of the Traffic Engineering method the up-to-dateness and completeness of the original data source (Google Street View) and the number of teaching samples influence the results.\n","PeriodicalId":233935,"journal":{"name":"Proceedings of the ICA","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ICA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/ica-proc-5-6-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. In this study the authors investigated the possibilities to use open data and open software complemented with machine learning to enhance the content of municipal databases. In the study area in Székesfehérvár, a GIS system is used with approximately with 30 modules, although many are still missing. The authors prepared examine the easiest and most affordable methods to extract data to use in two future modules: Parking and Traffic Engineering module. In parking model along field survey, they used QGIS and OpenStreetMap, in the other module they used Google StreetView for defining the places of traffic signs and used machine learning to define the signposts. They found that the accuracy of creating the parking module is based on the completeness of the database and the field measurement method, in case of the Traffic Engineering method the up-to-dateness and completeness of the original data source (Google Street View) and the number of teaching samples influence the results.
开放数据和机器学习服务于补充市政GIS清单
摘要在这项研究中,作者调查了使用开放数据和开放软件辅以机器学习来增强市政数据库内容的可能性。在Székesfehérvár的研究领域,使用了一个地理信息系统,大约有30个模块,尽管许多模块仍然缺失。作者准备研究最简单和最实惠的方法来提取数据,用于未来的两个模块:停车和交通工程模块。在停车模型和现场调查中,他们使用了QGIS和OpenStreetMap,在另一个模块中,他们使用谷歌StreetView来定义交通标志的位置,并使用机器学习来定义路标。他们发现,创建停车模块的准确性基于数据库的完整性和现场测量方法,对于交通工程方法,原始数据源(谷歌街景)的及时性和完整性以及教学样本的数量会影响结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信