“Why did my AI agent lose?”: Visual Analytics for Scaling Up After-Action Review

Delyar Tabatabai, Anita Ruangrotsakun, Jed Irvine, Jonathan Dodge, Zeyad Shureih, Kin-Ho Lam, M. Burnett, Alan Fern, Minsuk Kahng
{"title":"“Why did my AI agent lose?”: Visual Analytics for Scaling Up After-Action Review","authors":"Delyar Tabatabai, Anita Ruangrotsakun, Jed Irvine, Jonathan Dodge, Zeyad Shureih, Kin-Ho Lam, M. Burnett, Alan Fern, Minsuk Kahng","doi":"10.1109/VIS49827.2021.9623268","DOIUrl":null,"url":null,"abstract":"How can we help domain-knowledgeable users who do not have expertise in AI analyze why an AI agent failed? Our research team previously developed a new structured process for such users to assess AI, called After-Action Review for AI (AAR/AI), consisting of a series of steps a human takes to assess an AI agent and formalize their understanding. In this paper, we investigate how the AAR/AI process can scale up to support reinforcement learning (RL) agents that operate in complex environments. We augment the AAR/AI process to be performed at three levels—episode-level, decision-level, and explanation-level—and integrate it into our redesigned visual analytics interface. We illustrate our approach through a usage scenario of analyzing why a RL agent lost in a complex real-time strategy game built with the StarCraft 2 engine. We believe integrating structured processes like AAR/AI into visualization tools can help visualization play a more critical role in AI interpretability.","PeriodicalId":387572,"journal":{"name":"2021 IEEE Visualization Conference (VIS)","volume":"8 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS49827.2021.9623268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

How can we help domain-knowledgeable users who do not have expertise in AI analyze why an AI agent failed? Our research team previously developed a new structured process for such users to assess AI, called After-Action Review for AI (AAR/AI), consisting of a series of steps a human takes to assess an AI agent and formalize their understanding. In this paper, we investigate how the AAR/AI process can scale up to support reinforcement learning (RL) agents that operate in complex environments. We augment the AAR/AI process to be performed at three levels—episode-level, decision-level, and explanation-level—and integrate it into our redesigned visual analytics interface. We illustrate our approach through a usage scenario of analyzing why a RL agent lost in a complex real-time strategy game built with the StarCraft 2 engine. We believe integrating structured processes like AAR/AI into visualization tools can help visualization play a more critical role in AI interpretability.
“为什么我的人工智能代理输了?:用于扩大事后评估的可视化分析
我们如何帮助不具备AI专业知识的领域知识用户分析AI代理失败的原因?我们的研究团队之前为这些用户开发了一个新的结构化流程来评估人工智能,称为人工智能事后审查(AAR/AI),由人类评估人工智能代理并形式化他们的理解所采取的一系列步骤组成。在本文中,我们研究了AAR/AI过程如何扩展以支持在复杂环境中运行的强化学习(RL)代理。我们将AAR/AI过程扩展到三个级别——情节级、决策级和解释级——并将其集成到我们重新设计的可视化分析界面中。我们通过分析RL代理在使用《星际争霸2》引擎构建的复杂实时战略游戏中丢失的原因,说明了我们的方法。我们相信,将结构化过程(如AAR/AI)集成到可视化工具中,可以帮助可视化在AI可解释性中发挥更重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信