{"title":"Quantum noise in energy-efficient slow light structures for optical computing: sqeezed light from slow light","authors":"R. Hamerly, K. Jamshidi, H. Mabuchi","doi":"10.1117/12.2227308","DOIUrl":null,"url":null,"abstract":"Due to their strong light confinement, waveguides with optical nonlinearities may be a promising platform for energy-efficient optical computing. Slow light can enhance a waveguide’s effective nonlinearity, which could result in devices that operate in low-power regimes where quantum fluctuations are important, and may also have quantum applications including squeezing and entanglement generation. In this manuscript, slow-light structures based on the Kerr (χ(3)) nonlinearity are analyzed using a semi-classical model to account for the quantum noise. We develop a hybrid split-step / Runge-Kutta numerical model to compute the mean field and squeezing spectrum for pulses propagating down a waveguide, and use this model to study squeezing produced in optical waveguides. Scaling relations are explored, and the benefits and limitations of slow light are discussed in the context of squeezing.","PeriodicalId":285152,"journal":{"name":"SPIE Photonics Europe","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Photonics Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2227308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their strong light confinement, waveguides with optical nonlinearities may be a promising platform for energy-efficient optical computing. Slow light can enhance a waveguide’s effective nonlinearity, which could result in devices that operate in low-power regimes where quantum fluctuations are important, and may also have quantum applications including squeezing and entanglement generation. In this manuscript, slow-light structures based on the Kerr (χ(3)) nonlinearity are analyzed using a semi-classical model to account for the quantum noise. We develop a hybrid split-step / Runge-Kutta numerical model to compute the mean field and squeezing spectrum for pulses propagating down a waveguide, and use this model to study squeezing produced in optical waveguides. Scaling relations are explored, and the benefits and limitations of slow light are discussed in the context of squeezing.