Signal Detection for HF Skywave Massive MIMO-OFDM with Slepian Transform

L. Song, D. Shi, Lu Gan, Xiqi Gao
{"title":"Signal Detection for HF Skywave Massive MIMO-OFDM with Slepian Transform","authors":"L. Song, D. Shi, Lu Gan, Xiqi Gao","doi":"10.1109/WCSP55476.2022.10039433","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate signal detection for high frequency (HF) skywave massive multiple-input multiple-output (MIMO) systems with orthogonal frequency division multiplexing (OFDM) modulation. We first reveal the relationship of sparse supports between the beam domain channel and the Fourier spectrum of the space domain channel for HF skywave massive MIMO-OFDM channels. We then propose a separate Slepian transform (SST) based detector, where a set of modulated Slepian sequences are designed separately for user terminals (UTs). Before the MMSE detection, the Slepian transform is performed to reduce the dimension for each UT, thus avoiding high di-mensional matrices multiplications and inversions. To further reduce the computational complexity, we propose a joint Slepian transform (JST) based detector, where a fixed set of modulated Slepian sequences are designed, and Slepian transforms of the observation vector can be efficiently implemented based on low-dimensional fast Fourier transform (FFT). Simulation results demonstrate the attractive performance and excellent complexity advantage of proposed detectors.","PeriodicalId":199421,"journal":{"name":"2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP55476.2022.10039433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate signal detection for high frequency (HF) skywave massive multiple-input multiple-output (MIMO) systems with orthogonal frequency division multiplexing (OFDM) modulation. We first reveal the relationship of sparse supports between the beam domain channel and the Fourier spectrum of the space domain channel for HF skywave massive MIMO-OFDM channels. We then propose a separate Slepian transform (SST) based detector, where a set of modulated Slepian sequences are designed separately for user terminals (UTs). Before the MMSE detection, the Slepian transform is performed to reduce the dimension for each UT, thus avoiding high di-mensional matrices multiplications and inversions. To further reduce the computational complexity, we propose a joint Slepian transform (JST) based detector, where a fixed set of modulated Slepian sequences are designed, and Slepian transforms of the observation vector can be efficiently implemented based on low-dimensional fast Fourier transform (FFT). Simulation results demonstrate the attractive performance and excellent complexity advantage of proposed detectors.
基于Slepian变换的高频天波海量MIMO-OFDM信号检测
本文研究了正交频分复用(OFDM)调制下的高频(HF)天波大规模多输入多输出(MIMO)系统的信号检测。我们首先揭示了高频天波大规模MIMO-OFDM信道波束域信道与空间域信道傅立叶谱之间的稀疏支撑关系。然后,我们提出了一个单独的基于Slepian变换(SST)的检测器,其中一组调制的Slepian序列被单独设计用于用户终端(ut)。在MMSE检测之前,进行Slepian变换以降低每个UT的维数,从而避免了高维矩阵的乘法和反转。为了进一步降低计算复杂度,我们提出了一种基于联合Slepian变换(JST)的检测器,该检测器设计了一组固定的调制Slepian序列,并基于低维快速傅里叶变换(FFT)有效地实现观测向量的Slepian变换。仿真结果表明,所提出的检测器具有良好的性能和复杂度优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信