Bullet matching using SIFT feature

Ahmet Sayar, Fatih Tetiker, Erman Acar, Banu Oskay Acar, U. Sakarya
{"title":"Bullet matching using SIFT feature","authors":"Ahmet Sayar, Fatih Tetiker, Erman Acar, Banu Oskay Acar, U. Sakarya","doi":"10.1109/SIU.2011.5929662","DOIUrl":null,"url":null,"abstract":"Firearms leave special marks on the bullet while the bullet travels through the barrel. In this work, visual word codes obtained from interest points were used in bullet matching. Visual codebook was constructed by clustering Scale Invariant Feature Transform (SIFT) features using interest point orientation information as semi-supervised clustering constraint. The ratio of the number of visual words in common to the total number of visual words was used as a similarity metric in the comparison of images. Visual words are weighted by inverse document frequency which is frequently used in text document comparisons. Experiment results show that the proposed method presents promising results in bullet matching.","PeriodicalId":114797,"journal":{"name":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 19th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2011.5929662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Firearms leave special marks on the bullet while the bullet travels through the barrel. In this work, visual word codes obtained from interest points were used in bullet matching. Visual codebook was constructed by clustering Scale Invariant Feature Transform (SIFT) features using interest point orientation information as semi-supervised clustering constraint. The ratio of the number of visual words in common to the total number of visual words was used as a similarity metric in the comparison of images. Visual words are weighted by inverse document frequency which is frequently used in text document comparisons. Experiment results show that the proposed method presents promising results in bullet matching.
使用SIFT特征进行子弹匹配
火器在子弹穿过枪管时在子弹上留下特殊的痕迹。在这项工作中,从兴趣点获得的视觉字码用于项目符匹配。以兴趣点方向信息作为半监督聚类约束,对尺度不变特征变换(SIFT)特征进行聚类,构建视觉码本。在图像比较中,使用共有视觉词数与总视觉词数的比值作为相似度度量。视觉词用逆文档频率加权,逆文档频率在文本文档比较中经常使用。实验结果表明,该方法在子弹匹配方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信