Incremental gate sizing for late process changes

John Lee, Puneet Gupta
{"title":"Incremental gate sizing for late process changes","authors":"John Lee, Puneet Gupta","doi":"10.1109/ICCD.2010.5647778","DOIUrl":null,"url":null,"abstract":"Circuit design often runs in parallel with the development of the manufacturing process that will be used to fabricate it. However, as the manufacturing process matures, its models may undergo substantial changes as the design nears production. These changes may cause the design itself to fail its specifications, and in these cases it is necessary to perform an Engineering Change Order (ECO) to correct these problems. We present a new framework to perform incremental gate sizing for process changes late in the design cycle. This includes a method to measure and estimate ECO cost, transform these costs into a linear programming optimization problem, and solve the problem to find the ECO. This method performs well, compared to a leading commercial physical design tool, reducing ECO costs by 18% to 99% in changed area, and 1% to 96% in number of pins with unnecessary pin timing changes.","PeriodicalId":182350,"journal":{"name":"2010 IEEE International Conference on Computer Design","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2010.5647778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Circuit design often runs in parallel with the development of the manufacturing process that will be used to fabricate it. However, as the manufacturing process matures, its models may undergo substantial changes as the design nears production. These changes may cause the design itself to fail its specifications, and in these cases it is necessary to perform an Engineering Change Order (ECO) to correct these problems. We present a new framework to perform incremental gate sizing for process changes late in the design cycle. This includes a method to measure and estimate ECO cost, transform these costs into a linear programming optimization problem, and solve the problem to find the ECO. This method performs well, compared to a leading commercial physical design tool, reducing ECO costs by 18% to 99% in changed area, and 1% to 96% in number of pins with unnecessary pin timing changes.
后期工艺变化的增量浇口尺寸
电路设计通常与用于制造电路的制造工艺的发展并行进行。然而,随着制造工艺的成熟,随着设计接近生产,其模型可能会发生实质性的变化。这些变更可能导致设计本身不符合规范,在这些情况下,有必要执行工程变更令(ECO)来纠正这些问题。我们提出了一个新的框架,在设计周期的后期为工艺变化执行增量浇口尺寸。这包括测量和估计ECO成本的方法,将这些成本转化为线性规划优化问题,并求解问题以找到ECO。与领先的商业物理设计工具相比,该方法性能良好,在改变面积方面降低了18%至99%的ECO成本,在不必要的引脚时间变化方面减少了1%至96%的引脚数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信