Primal-dual approximation algorithms for metric facility location and k-median problems

K. Jain, V. Vazirani
{"title":"Primal-dual approximation algorithms for metric facility location and k-median problems","authors":"K. Jain, V. Vazirani","doi":"10.1109/SFFCS.1999.814571","DOIUrl":null,"url":null,"abstract":"We present approximation algorithms for the metric uncapacitated facility location problem and the metric k-median problem achieving guarantees of 3 and 6 respectively. The distinguishing feature of our algorithms is their low running time: O(m log m) and O(m log m(L+log(n))) respectively, where n and m are the total number of vertices and edges in the underlying graph. The main algorithmic idea is a new extension of the primal-dual schema.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"283","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 283

Abstract

We present approximation algorithms for the metric uncapacitated facility location problem and the metric k-median problem achieving guarantees of 3 and 6 respectively. The distinguishing feature of our algorithms is their low running time: O(m log m) and O(m log m(L+log(n))) respectively, where n and m are the total number of vertices and edges in the underlying graph. The main algorithmic idea is a new extension of the primal-dual schema.
度量设施定位和k-中值问题的原对偶逼近算法
我们提出了度量无能力设施定位问题和度量k-中值问题的近似算法,分别实现了3和6的保证。我们的算法的显著特征是它们的低运行时间:分别为O(m log m)和O(m log m(L+log(n))),其中n和m是底层图中顶点和边的总数。主要的算法思想是对原对偶模式的一种新的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信