On Attribute Disclosure in Randomization Based Privacy Preserving Data Publishing

Ling Guo, Xiaowei Ying, Xintao Wu
{"title":"On Attribute Disclosure in Randomization Based Privacy Preserving Data Publishing","authors":"Ling Guo, Xiaowei Ying, Xintao Wu","doi":"10.1109/ICDMW.2010.76","DOIUrl":null,"url":null,"abstract":"Privacy preserving micro data publication has received wide attentions. In this paper, we investigate the randomization approach and focus on attribute disclosure under linking attacks. We give efficient solutions to determine optimal distortion parameters such that we can maximize utility preservation while still satisfying privacy requirements. We compare our randomization approach with l-diversity and anatomy in terms of utility preservation (under the same privacy requirements) from three aspects (reconstructed distributions, accuracy of answering queries, and preservation of correlations). Our empirical results show that randomization incurs significantly smaller utility loss.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Privacy preserving micro data publication has received wide attentions. In this paper, we investigate the randomization approach and focus on attribute disclosure under linking attacks. We give efficient solutions to determine optimal distortion parameters such that we can maximize utility preservation while still satisfying privacy requirements. We compare our randomization approach with l-diversity and anatomy in terms of utility preservation (under the same privacy requirements) from three aspects (reconstructed distributions, accuracy of answering queries, and preservation of correlations). Our empirical results show that randomization incurs significantly smaller utility loss.
基于随机化的隐私保护数据发布中的属性披露研究
隐私保护微数据发布受到了广泛关注。本文研究了随机化方法,重点研究了链接攻击下的属性披露问题。我们给出了确定最优失真参数的有效解决方案,以便在满足隐私要求的同时最大限度地保持效用。我们从三个方面(重构分布、回答查询的准确性和相关性保存)比较了我们的随机化方法与l-diversity和解剖学的效用保存(在相同的隐私要求下)。我们的实证结果表明,随机化导致的效用损失明显较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信