Decomposing the Asset Pricing Anomalies: Evidence from China

Bo Li, Zhenya Liu
{"title":"Decomposing the Asset Pricing Anomalies: Evidence from China","authors":"Bo Li, Zhenya Liu","doi":"10.2139/ssrn.3756732","DOIUrl":null,"url":null,"abstract":"This paper introduces a functional principal component analysis (FPCA) to decompose China’s A-share portfolio returns on time-series and cross-section simultaneously. The results show that the first empirical functional principal component (EFPC) stands for the market factor and the others for an anomaly. The second and third ones reveal the cross-sectional linear and convex patterns, and the joint of them dominates the asset pricing anomalies. Furthermore, the EFPCs illustrate much more information than the portfolio-based approach, and we can use them to explain the debates about some anomalies.","PeriodicalId":153840,"journal":{"name":"Emerging Markets: Finance eJournal","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Markets: Finance eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3756732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a functional principal component analysis (FPCA) to decompose China’s A-share portfolio returns on time-series and cross-section simultaneously. The results show that the first empirical functional principal component (EFPC) stands for the market factor and the others for an anomaly. The second and third ones reveal the cross-sectional linear and convex patterns, and the joint of them dominates the asset pricing anomalies. Furthermore, the EFPCs illustrate much more information than the portfolio-based approach, and we can use them to explain the debates about some anomalies.
资产定价异常的分解:来自中国的证据
本文采用功能主成分分析(FPCA)对中国a股投资组合收益进行时间序列和截面同时分解。结果表明,第一经验功能主成分(EFPC)代表市场因素,其他主成分代表异常因素。第二和第三模型呈现出横断面的线性和凸型模式,它们的联合支配着资产定价异常。此外,efpc比基于投资组合的方法说明了更多的信息,我们可以用它们来解释关于一些异常的争论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信