{"title":"Density-Aware Probabilistic Clustering in Ad Hoc Networks","authors":"Doğanalp Ergenç, M. L. Eksert, E. Onur","doi":"10.1109/BlackSeaCom.2018.8433605","DOIUrl":null,"url":null,"abstract":"Clustering makes an ad hoc network scalable forming easy-to-manage local groups. However, it brings an extra control overhead to create and maintain clustered network topology. In this paper, we propose Probabilistic Clustering Algorithm that is a simple and efficient clustering algorithm with minimal overhead. In this algorithm, cluster heads are determined probabilistically in a distributed fashion. An analytic model is introduced for nodes to compute the probability of declaring themselves as cluster heads. We validate the analytic model by Monte-Carlo simulations. Furthermore, we propose a cross-layer clustered stack and simulate simple applications in stationary and dynamic topologies using OMNeT++. Discrete event simulation results show that Probabilistic Clustering Algorithm eliminates a significant amount of control overhead and the performance of the algorithm is considerably better compared to its opponent, Identity-based Clustering Algorithm.","PeriodicalId":351647,"journal":{"name":"2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2018.8433605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Clustering makes an ad hoc network scalable forming easy-to-manage local groups. However, it brings an extra control overhead to create and maintain clustered network topology. In this paper, we propose Probabilistic Clustering Algorithm that is a simple and efficient clustering algorithm with minimal overhead. In this algorithm, cluster heads are determined probabilistically in a distributed fashion. An analytic model is introduced for nodes to compute the probability of declaring themselves as cluster heads. We validate the analytic model by Monte-Carlo simulations. Furthermore, we propose a cross-layer clustered stack and simulate simple applications in stationary and dynamic topologies using OMNeT++. Discrete event simulation results show that Probabilistic Clustering Algorithm eliminates a significant amount of control overhead and the performance of the algorithm is considerably better compared to its opponent, Identity-based Clustering Algorithm.