Density-Aware Probabilistic Clustering in Ad Hoc Networks

Doğanalp Ergenç, M. L. Eksert, E. Onur
{"title":"Density-Aware Probabilistic Clustering in Ad Hoc Networks","authors":"Doğanalp Ergenç, M. L. Eksert, E. Onur","doi":"10.1109/BlackSeaCom.2018.8433605","DOIUrl":null,"url":null,"abstract":"Clustering makes an ad hoc network scalable forming easy-to-manage local groups. However, it brings an extra control overhead to create and maintain clustered network topology. In this paper, we propose Probabilistic Clustering Algorithm that is a simple and efficient clustering algorithm with minimal overhead. In this algorithm, cluster heads are determined probabilistically in a distributed fashion. An analytic model is introduced for nodes to compute the probability of declaring themselves as cluster heads. We validate the analytic model by Monte-Carlo simulations. Furthermore, we propose a cross-layer clustered stack and simulate simple applications in stationary and dynamic topologies using OMNeT++. Discrete event simulation results show that Probabilistic Clustering Algorithm eliminates a significant amount of control overhead and the performance of the algorithm is considerably better compared to its opponent, Identity-based Clustering Algorithm.","PeriodicalId":351647,"journal":{"name":"2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2018.8433605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Clustering makes an ad hoc network scalable forming easy-to-manage local groups. However, it brings an extra control overhead to create and maintain clustered network topology. In this paper, we propose Probabilistic Clustering Algorithm that is a simple and efficient clustering algorithm with minimal overhead. In this algorithm, cluster heads are determined probabilistically in a distributed fashion. An analytic model is introduced for nodes to compute the probability of declaring themselves as cluster heads. We validate the analytic model by Monte-Carlo simulations. Furthermore, we propose a cross-layer clustered stack and simulate simple applications in stationary and dynamic topologies using OMNeT++. Discrete event simulation results show that Probabilistic Clustering Algorithm eliminates a significant amount of control overhead and the performance of the algorithm is considerably better compared to its opponent, Identity-based Clustering Algorithm.
Ad Hoc网络中的密度感知概率聚类
集群使自组织网络可扩展,形成易于管理的本地组。但是,它带来了创建和维护集群网络拓扑的额外控制开销。本文提出的概率聚类算法是一种简单、高效、开销最小的聚类算法。在该算法中,簇头以分布式方式概率确定。引入了节点声明自己为簇头概率的解析模型。通过蒙特卡洛仿真验证了分析模型的正确性。此外,我们提出了一个跨层集群堆栈,并使用omnet++在静态和动态拓扑中模拟简单的应用程序。离散事件仿真结果表明,概率聚类算法消除了大量的控制开销,与基于身份的聚类算法相比,该算法的性能要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信