Enhancement and segmentation of pituitary gland from MR brain images

S. A. Banday, A. H. Mir
{"title":"Enhancement and segmentation of pituitary gland from MR brain images","authors":"S. A. Banday, A. H. Mir","doi":"10.1504/IJMEI.2017.10004446","DOIUrl":null,"url":null,"abstract":"The work herein proposes a framework for semi-automatic segmentation of pituitary gland from MRI brain images. The proposed framework initially uses a fused stationary wavelet transform (SWT) and discrete wavelet transform (DWT) to obtain a high resolution image of the input MRI brain image. After the input MRI brain image enhancement, the method applies thresholding and mathematical morphology to segment the pituitary gland from the input MRI brain image. The proposed algorithm for the same is coded in MATLAB 7.9 on MRI brain images. The segmented pituitary gland obtained using the proposed method is compared with the manually segmented pituitary gland (by an expert), region growing-based brain segmentation and watershed brain segmentation using Jackard's similarity coefficient (JSI) and overlap index (OI). The visual evaluation by a team of radiologists has demonstrated the efficacy of the proposed framework of pituitary gland extraction.","PeriodicalId":193362,"journal":{"name":"Int. J. Medical Eng. Informatics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Medical Eng. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMEI.2017.10004446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work herein proposes a framework for semi-automatic segmentation of pituitary gland from MRI brain images. The proposed framework initially uses a fused stationary wavelet transform (SWT) and discrete wavelet transform (DWT) to obtain a high resolution image of the input MRI brain image. After the input MRI brain image enhancement, the method applies thresholding and mathematical morphology to segment the pituitary gland from the input MRI brain image. The proposed algorithm for the same is coded in MATLAB 7.9 on MRI brain images. The segmented pituitary gland obtained using the proposed method is compared with the manually segmented pituitary gland (by an expert), region growing-based brain segmentation and watershed brain segmentation using Jackard's similarity coefficient (JSI) and overlap index (OI). The visual evaluation by a team of radiologists has demonstrated the efficacy of the proposed framework of pituitary gland extraction.
脑磁共振图像中垂体的增强与分割
本文提出了一种MRI脑图像中垂体的半自动分割框架。该框架首先使用融合平稳小波变换(SWT)和离散小波变换(DWT)来获得输入MRI脑图像的高分辨率图像。该方法对输入的MRI脑图像进行增强后,利用阈值分割和数学形态学对输入的MRI脑图像进行垂体分割。所提出的算法在MATLAB 7.9中对MRI脑图像进行编码。将该方法得到的分割后的脑垂体与人工(专家)分割的脑垂体、基于区域生长的脑分割以及基于Jackard相似系数(JSI)和重叠指数(OI)的分水岭脑分割进行比较。一组放射科医生的视觉评估已经证明了脑垂体提取的建议框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信