SINTERING OF MLCC’S BARIUM TITANATE WITH MICROWAVES

J. Aguilar-Garib, Osvaldo Tijerina-García, Javier Garza-Guajardo
{"title":"SINTERING OF MLCC’S BARIUM TITANATE WITH MICROWAVES","authors":"J. Aguilar-Garib, Osvaldo Tijerina-García, Javier Garza-Guajardo","doi":"10.4995/ampere2019.2019.9919","DOIUrl":null,"url":null,"abstract":"A comparison of microwave and conventional, in an electric resistance furnace, sintered layers of dielectric base barium titanate (BaTiO3) of the kind employed for multilayer ceramic capacitors (MLCC) was performed. Two kinds of samples were used for each processing method; the layers alone without electrodes, and the green MLCC with the layers and electrodes interdigitated. Samples were exposed to microwaves for 20 minutes and heated up to 1050°C and 1150°C for sintering in a crucible with graphite that acted as reduction agent and microwave susceptor. Conventional sintering was performed in the same arrangement but lasted 120 minutes since it was found that 20 minutes was not enough time to achieve sintering. Heating rate in both cases was 10 °C/min. It was observed that the layers without the electrodes achieve about the same densification for both processes, while in the case of the green MLCC’s the results were variable, ranging from sample that became dust, to cracked samples and some well sintered ones. At least in the microwave case, it is possible that the variability of the results is due to the importance of the location of the sample in the cavity that in turn affects the electric field pattern, especially because the presence of the  electrodes that can cause overheating around them.","PeriodicalId":277158,"journal":{"name":"Proceedings 17th International Conference on Microwave and High Frequency Heating","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 17th International Conference on Microwave and High Frequency Heating","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/ampere2019.2019.9919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A comparison of microwave and conventional, in an electric resistance furnace, sintered layers of dielectric base barium titanate (BaTiO3) of the kind employed for multilayer ceramic capacitors (MLCC) was performed. Two kinds of samples were used for each processing method; the layers alone without electrodes, and the green MLCC with the layers and electrodes interdigitated. Samples were exposed to microwaves for 20 minutes and heated up to 1050°C and 1150°C for sintering in a crucible with graphite that acted as reduction agent and microwave susceptor. Conventional sintering was performed in the same arrangement but lasted 120 minutes since it was found that 20 minutes was not enough time to achieve sintering. Heating rate in both cases was 10 °C/min. It was observed that the layers without the electrodes achieve about the same densification for both processes, while in the case of the green MLCC’s the results were variable, ranging from sample that became dust, to cracked samples and some well sintered ones. At least in the microwave case, it is possible that the variability of the results is due to the importance of the location of the sample in the cavity that in turn affects the electric field pattern, especially because the presence of the  electrodes that can cause overheating around them.
微波烧结mlcc钛酸钡
在电阻炉中对用于多层陶瓷电容器(MLCC)的介电基钛酸钡(BaTiO3)进行了微波和常规烧结层的比较。每种处理方法使用两种样品;没有电极的单独层,以及层和电极交错的绿色MLCC。样品在微波中暴露20分钟,加热至1050℃和1150℃,在坩埚中烧结,石墨作为还原剂和微波感受器。常规烧结在相同的安排下进行,但持续了120分钟,因为发现20分钟的时间不足以实现烧结。两种情况下的加热速率均为10°C/min。可以观察到,没有电极的层在两种工艺中实现了大致相同的致密化,而在绿色MLCC的情况下,结果是可变的,从变成灰尘的样品,到破裂的样品和一些烧结良好的样品。至少在微波的情况下,结果的可变性可能是由于样品在腔中的位置的重要性,而这反过来又影响了电场模式,特别是因为电极的存在可能导致它们周围过热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信