K. ., A. A. Subhi, H. Alkattan, A. Kadi, Artem .., Irina .., Mostafa .., E. El-Kenawy
{"title":"Forecasting COVID-19 Infection Using Encoder-Decoder LSTM and Attention LSTM Algorithms","authors":"K. ., A. A. Subhi, H. Alkattan, A. Kadi, Artem .., Irina .., Mostafa .., E. El-Kenawy","doi":"10.54216/jisiot.080202","DOIUrl":null,"url":null,"abstract":"The COVID-19 epidemic has in fact placed the whole community in a dire predicament that has led to numerous tragedies, including an economic downturn, political unrest, and job losses. Forecasting and identifying COVID-19 infection cases is crucial for the government at all levels because the pandemic grows exponentially and results in fatalities. Hence, by giving information about the spread of the epidemic, the government can move quickly at multiple levels to establish new policies and modalities in order to minimize the trajectory of the COVID-19 pandemic's effects on both public health and the economic sectors. Forecasting models for COVID-19 infection cases in the Ural region in Russia were developed using two deep Long Short-Term Memory (LSTM) learning-based approaches namely Encoder–Decoder LSTM and Attention LSTM algorithms. The models were evaluated based on five standard performance evaluation metrics which include Mean Square Error (MSE), Mean Absolute Error (MAE), Root MSE (RMSE), Relative RMSE (RRMSE), and coefficient of determination (R2). However, the Encoder–Decoder LSTM deep learning-based forecasting model achieved the best performance results (MSE=32794.09, MAE=168.56, RMSE=181.09, RRMSE=13.46, and R2=0.87) compared to the model developed with Attention LSTM models.","PeriodicalId":122556,"journal":{"name":"Journal of Intelligent Systems and Internet of Things","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/jisiot.080202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 epidemic has in fact placed the whole community in a dire predicament that has led to numerous tragedies, including an economic downturn, political unrest, and job losses. Forecasting and identifying COVID-19 infection cases is crucial for the government at all levels because the pandemic grows exponentially and results in fatalities. Hence, by giving information about the spread of the epidemic, the government can move quickly at multiple levels to establish new policies and modalities in order to minimize the trajectory of the COVID-19 pandemic's effects on both public health and the economic sectors. Forecasting models for COVID-19 infection cases in the Ural region in Russia were developed using two deep Long Short-Term Memory (LSTM) learning-based approaches namely Encoder–Decoder LSTM and Attention LSTM algorithms. The models were evaluated based on five standard performance evaluation metrics which include Mean Square Error (MSE), Mean Absolute Error (MAE), Root MSE (RMSE), Relative RMSE (RRMSE), and coefficient of determination (R2). However, the Encoder–Decoder LSTM deep learning-based forecasting model achieved the best performance results (MSE=32794.09, MAE=168.56, RMSE=181.09, RRMSE=13.46, and R2=0.87) compared to the model developed with Attention LSTM models.