Multi-residuals Network and Region Constraints Based Face-image Denoising

Haiqing Chen, Fei Chen
{"title":"Multi-residuals Network and Region Constraints Based Face-image Denoising","authors":"Haiqing Chen, Fei Chen","doi":"10.1109/ICACI.2019.8778608","DOIUrl":null,"url":null,"abstract":"In recent years, the denoising models based on convolutional neural network (CNN) have made great progress. However, CNN based image denoising models tend to generate artifacts and blurry edges. To deal with this problem, this paper proposes a multi-residuals network with cascade strategy to keep image textures, and integrates face region constraints to loss function of model optimization. The weighted loss function characterizes the location and gray probabilities of different face regions, which brings benefits to recover face-image sharpness and naturalness. Experimental results on the Helen and IMM face datasets show that the proposed model can suppress artifacts in smooth regions and recover sharper edges.","PeriodicalId":213368,"journal":{"name":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2019.8778608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the denoising models based on convolutional neural network (CNN) have made great progress. However, CNN based image denoising models tend to generate artifacts and blurry edges. To deal with this problem, this paper proposes a multi-residuals network with cascade strategy to keep image textures, and integrates face region constraints to loss function of model optimization. The weighted loss function characterizes the location and gray probabilities of different face regions, which brings benefits to recover face-image sharpness and naturalness. Experimental results on the Helen and IMM face datasets show that the proposed model can suppress artifacts in smooth regions and recover sharper edges.
基于多残差网络和区域约束的人脸图像去噪
近年来,基于卷积神经网络(CNN)的去噪模型取得了很大的进展。然而,基于CNN的图像去噪模型容易产生伪影和模糊边缘。为了解决这一问题,本文提出了一种采用级联策略的多残差网络来保持图像纹理,并将人脸区域约束集成到模型优化的损失函数中。加权损失函数表征了不同人脸区域的位置和灰度概率,有利于恢复人脸图像的清晰度和自然度。在Helen和IMM人脸数据集上的实验结果表明,该模型可以抑制平滑区域的伪影,恢复更锐利的边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信