Wavelet representations for time-frequency concentrated signals

Jie Liang, T. Parks
{"title":"Wavelet representations for time-frequency concentrated signals","authors":"Jie Liang, T. Parks","doi":"10.1109/DSP.1994.379845","DOIUrl":null,"url":null,"abstract":"Time-frequency concentrated signals are defined in the paper as the class of signals whose Wigner distributions are concentrated in some region of the Wigner domain. The authors introduce the concept of the Kolmogorov n-width and the constrained n-width to quantitatively measure the ability of a basis to represent a time-frequency concentrated signal class (the cone-class signals). They select the best wavelet representation by comparing the constrained n-widths of different wavelet bases. An explicit formula is given to compute the Kolmogorov n-width for the cone-class signals. A globally convergent algorithm is proposed to calculate the constrained n-width for a given basis.<<ETX>>","PeriodicalId":189083,"journal":{"name":"Proceedings of IEEE 6th Digital Signal Processing Workshop","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE 6th Digital Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP.1994.379845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Time-frequency concentrated signals are defined in the paper as the class of signals whose Wigner distributions are concentrated in some region of the Wigner domain. The authors introduce the concept of the Kolmogorov n-width and the constrained n-width to quantitatively measure the ability of a basis to represent a time-frequency concentrated signal class (the cone-class signals). They select the best wavelet representation by comparing the constrained n-widths of different wavelet bases. An explicit formula is given to compute the Kolmogorov n-width for the cone-class signals. A globally convergent algorithm is proposed to calculate the constrained n-width for a given basis.<>
时频集中信号的小波表示
本文将时频集中信号定义为维格纳分布集中在维格纳域某一区域的一类信号。作者引入Kolmogorov n-width和约束n-width的概念,定量地度量基表示时频集中信号类(锥类信号)的能力。他们通过比较不同小波基的约束n宽度来选择最佳的小波表示。给出了计算锥类信号的Kolmogorov n宽度的显式公式。提出了一种全局收敛的算法来计算给定基的约束n-宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信