Modified algorithm of the R-functions method for solving electromagnetics boundary value problems

M. A. Basarab
{"title":"Modified algorithm of the R-functions method for solving electromagnetics boundary value problems","authors":"M. A. Basarab","doi":"10.1109/MMET.2000.890541","DOIUrl":null,"url":null,"abstract":"The Dirichlet problem for 2D second order partial differential equation in an arbitrary domain is considered. To solve this problem, the variational R-functions method (RFM) with the Kantorovich (1962) general structure of solution (GSS) is used. Instead of the traditional RFM scheme, the complicated implicit function of the boundary is substituted here with its approximation by a set of functions with compact supports. It is important that this set is also used in the GSS. This approach allows one to decrease significantly the quantity of numerically calculated integrals expressing the elements of the matrices of systems of linear equations.","PeriodicalId":344401,"journal":{"name":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2000.890541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Dirichlet problem for 2D second order partial differential equation in an arbitrary domain is considered. To solve this problem, the variational R-functions method (RFM) with the Kantorovich (1962) general structure of solution (GSS) is used. Instead of the traditional RFM scheme, the complicated implicit function of the boundary is substituted here with its approximation by a set of functions with compact supports. It is important that this set is also used in the GSS. This approach allows one to decrease significantly the quantity of numerically calculated integrals expressing the elements of the matrices of systems of linear equations.
求解电磁学边值问题的改进r -函数法算法
研究任意区域二维二阶偏微分方程的Dirichlet问题。为了解决这一问题,采用了具有Kantorovich(1962)一般解结构(GSS)的变分r函数法(RFM)。代替传统的RFM格式,将边界的复杂隐函数用一组紧支撑函数代替。重要的是,该集合也在GSS中使用。这种方法可以大大减少表示线性方程组矩阵元素的数值计算积分的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信