On the quadratic approximation to the value of American put options: a note

A. Andrikopoulos
{"title":"On the quadratic approximation to the value of American put options: a note","authors":"A. Andrikopoulos","doi":"10.1080/17446540600993852","DOIUrl":null,"url":null,"abstract":"This article extends the quasi-analytical quadratic approximation of Barone-Adesi and Whaley (1987) in order to improve its performance for options with long time to expiration. We build a system of equations with an extra parameter and an additional boundary condition (‘boundary-optimality’), ensuring that the derived exercise boundary maximizes the price of the option. Numerical results for this approach show improved convergence performance for the quadratic approximation in the case of longer option lives.","PeriodicalId":345744,"journal":{"name":"Applied Financial Economics Letters","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Financial Economics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17446540600993852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This article extends the quasi-analytical quadratic approximation of Barone-Adesi and Whaley (1987) in order to improve its performance for options with long time to expiration. We build a system of equations with an extra parameter and an additional boundary condition (‘boundary-optimality’), ensuring that the derived exercise boundary maximizes the price of the option. Numerical results for this approach show improved convergence performance for the quadratic approximation in the case of longer option lives.
关于美式看跌期权价值的二次逼近:一张票据
本文对Barone-Adesi和Whaley(1987)的拟解析二次逼近进行了扩展,以提高其对长到期日期权的性能。我们建立了一个带有额外参数和额外边界条件(“边界最优性”)的方程组,以确保导出的执行边界使期权的价格最大化。数值结果表明,在期权寿命较长的情况下,该方法具有较好的二次逼近收敛性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信