On a Linearly Damped 2 Body Problem

A. Haraux
{"title":"On a Linearly Damped 2 Body Problem","authors":"A. Haraux","doi":"10.20944/preprints202012.0309.v1","DOIUrl":null,"url":null,"abstract":"The usual equation for both motions of a single planet around the sun and electrons in the deterministic Rutherford-Bohr atomic model is conservative with a singular potential at the origin. When a dissipation is added, new phenomena appear. It is shown that whenever the momentum is not zero, the moving particle does not reach the center in finite time and its displacement does not blow-up either, even in the classical context where arbitrarily large velocities are allowed. Moreover we prove that all bounded solutions tend to $0$ for $t$ large, and some formal calculations suggest the existence of special orbits with an asymptotically spiraling exponentially fast convergence to the center.","PeriodicalId":407889,"journal":{"name":"arXiv: Dynamical Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202012.0309.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The usual equation for both motions of a single planet around the sun and electrons in the deterministic Rutherford-Bohr atomic model is conservative with a singular potential at the origin. When a dissipation is added, new phenomena appear. It is shown that whenever the momentum is not zero, the moving particle does not reach the center in finite time and its displacement does not blow-up either, even in the classical context where arbitrarily large velocities are allowed. Moreover we prove that all bounded solutions tend to $0$ for $t$ large, and some formal calculations suggest the existence of special orbits with an asymptotically spiraling exponentially fast convergence to the center.
关于线性阻尼体问题
在确定性的卢瑟福-玻尔原子模型中,单个行星绕太阳运动和电子运动的通常方程都是保守的,在原点有一个奇异势。当加上耗散时,就会出现新的现象。结果表明,当动量不为零时,即使在允许任意大速度的经典环境中,运动粒子也不会在有限时间内到达中心,其位移也不会爆炸。此外,我们证明了所有有界解在t大时都趋向于0,并且一些形式计算表明了具有渐近螺旋指数快速收敛到中心的特殊轨道的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信