Speaker Recognition from Spectrogram Images

S. Kadyrov, Cemil Turan, Altynbek Amirzhanov, Cemal Ozdemir
{"title":"Speaker Recognition from Spectrogram Images","authors":"S. Kadyrov, Cemil Turan, Altynbek Amirzhanov, Cemal Ozdemir","doi":"10.1109/SIST50301.2021.9465954","DOIUrl":null,"url":null,"abstract":"Speaker identification is used to identify the owner of the voice among many people based on the uniqueness of everyone’s speech style. In this paper, we combine Convolutional Neural Network with Recurrent Neural Network using Long Short-Term Memory models for speaker recognition and implement the deep learning architecture on our dataset of spectrogram images for 77 different non-native speakers reading the same texts in Turkish. Usage of identical text reading eliminates the possible variations and diversities on spectrograms depending on vocabularies. Experiments show that the used method is very effective on recognition rate with satisfying performance and over 98% accuracy.","PeriodicalId":318915,"journal":{"name":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Smart Information Systems and Technologies (SIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIST50301.2021.9465954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Speaker identification is used to identify the owner of the voice among many people based on the uniqueness of everyone’s speech style. In this paper, we combine Convolutional Neural Network with Recurrent Neural Network using Long Short-Term Memory models for speaker recognition and implement the deep learning architecture on our dataset of spectrogram images for 77 different non-native speakers reading the same texts in Turkish. Usage of identical text reading eliminates the possible variations and diversities on spectrograms depending on vocabularies. Experiments show that the used method is very effective on recognition rate with satisfying performance and over 98% accuracy.
基于谱图图像的说话人识别
说话人识别是根据每个人说话风格的独特性,在众多人群中识别声音的所有者。在本文中,我们将卷积神经网络和循环神经网络结合使用长短期记忆模型进行说话人识别,并在我们的频谱图图像数据集上实现深度学习架构,该数据集包含77个不同的非母语人士阅读相同的土耳其语文本。使用相同的文本阅读消除了谱图因词汇不同而可能出现的变化和多样性。实验表明,该方法具有良好的识别率,准确率达到98%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信