{"title":"Enhancements of IEEE802.15.4e DSME Model of Wireless Sensor Networks","authors":"Sameer K. Alsudany, S. Boussakta, M. Johnston","doi":"10.1109/ICUFN.2018.8436600","DOIUrl":null,"url":null,"abstract":"Internet embedded sensor nodes have attracted the attention of researchers and industry due to their wide application. The main standard, IEEE802.15.4e 2012, introduces a deterministic and synchronous multi-channel extension (DSME) model. Three main issues should be tackled and improved with this model; a high energy consumption of end nodes during the contention access period (CAP), a long association and guaranteed time slot (GTS) earning times during a network initialization phase and a long network discovery time. These issues have been analysed and improved in a star topology wireless sensor network (WSN). Four scenarios with different numbers of nodes are investigated. Nodes numbers are set according to network saturation ratios (25%, 50%, 75%, and 100%). This paper proposes three enhancements for the performance of this model. Two new approaches are proposed to reduce the energy consumption of end nodes during the CAP period, a new association scheme during network initialization phase using a tight TDMA algorithm to minimize the time required for association and getting a GTS slot and reduce power consumption due to collisions, and a new technique to reduce network discovery time. Simulation results show significant improvements in reducing energy consumption and radio duty cycle (RDC) of end nodes by a factor of (71) and (77) respectively. Good improvements are also achieved in reducing association and GTS earning times by a factor of (8) on average. Finally, network discovery time has been reduced for fast association and further energy saving of end nodes.","PeriodicalId":224367,"journal":{"name":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN.2018.8436600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Internet embedded sensor nodes have attracted the attention of researchers and industry due to their wide application. The main standard, IEEE802.15.4e 2012, introduces a deterministic and synchronous multi-channel extension (DSME) model. Three main issues should be tackled and improved with this model; a high energy consumption of end nodes during the contention access period (CAP), a long association and guaranteed time slot (GTS) earning times during a network initialization phase and a long network discovery time. These issues have been analysed and improved in a star topology wireless sensor network (WSN). Four scenarios with different numbers of nodes are investigated. Nodes numbers are set according to network saturation ratios (25%, 50%, 75%, and 100%). This paper proposes three enhancements for the performance of this model. Two new approaches are proposed to reduce the energy consumption of end nodes during the CAP period, a new association scheme during network initialization phase using a tight TDMA algorithm to minimize the time required for association and getting a GTS slot and reduce power consumption due to collisions, and a new technique to reduce network discovery time. Simulation results show significant improvements in reducing energy consumption and radio duty cycle (RDC) of end nodes by a factor of (71) and (77) respectively. Good improvements are also achieved in reducing association and GTS earning times by a factor of (8) on average. Finally, network discovery time has been reduced for fast association and further energy saving of end nodes.