{"title":"Polynomial-time optimization, parallel approximation, and fixpoint logic","authors":"Phokion G. Kolaitis, Madhukar N. Thakur","doi":"10.1109/SCT.1993.336543","DOIUrl":null,"url":null,"abstract":"A study of polynomial-time optimization from the perspective of descriptive complexity theory is initiated. It is established that the class of polynomial-time and polynomially bounded optimization problems with ordered finite structures as instances can be characterized in terms of the stage functions of positive first-order formulas, i.e., the functions that compute the number of distinct stages in the bottom-up evaluation of the least fixpoints of such formulas. After this, the stage functions of several first-order formulas whose least fixpoints form natural p-complete problems are studied, and it is shown that they are not NC-approximate within any factor of the optimum, unless P=NC. Finally, it is proved that certain polynomial-time optimization problems are complete with respect to a new kind of restricted reductions that preserve parallel approximability and are definable using quantifier-free formulae.<<ETX>>","PeriodicalId":331616,"journal":{"name":"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCT.1993.336543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A study of polynomial-time optimization from the perspective of descriptive complexity theory is initiated. It is established that the class of polynomial-time and polynomially bounded optimization problems with ordered finite structures as instances can be characterized in terms of the stage functions of positive first-order formulas, i.e., the functions that compute the number of distinct stages in the bottom-up evaluation of the least fixpoints of such formulas. After this, the stage functions of several first-order formulas whose least fixpoints form natural p-complete problems are studied, and it is shown that they are not NC-approximate within any factor of the optimum, unless P=NC. Finally, it is proved that certain polynomial-time optimization problems are complete with respect to a new kind of restricted reductions that preserve parallel approximability and are definable using quantifier-free formulae.<>