{"title":"A pilot study for active muscles decoding using functional near-infrared spectroscopy","authors":"Ruisen Huang, K. Hong, Fei Gao","doi":"10.1109/NER52421.2023.10123845","DOIUrl":null,"url":null,"abstract":"This study is a preliminary step toward gait identification using a non-invasive brain-computer interface. We investigated the feasibility of decoding different active muscles from brain activation using functional near-infrared spectroscopy (fNIRS). A two-section experiment was designed to alternately activate the subjects' hamstring and quadriceps. Nine right-handed subjects, aged $28.1\\pm 3.5$, were recruited for the experiment. The measured optical intensities were converted to optical density changes and filtered by targeted principal component analysis (tPCA), a lowpass filter, and a highpass filter sequentially. Six features (slope, skewness, kurtosis, peak-to-peak, standard deviation, and entropy) were extracted from the filtered signals and fed to a linear discriminant analysis (LDA) classifier in pairs. Results showed that using the feature pair of slope-standard deviation, we could achieve a classification rate of more than 80% for all four categories (sitting extension, sitting flexion, standing extension, and standing flexion). The maximum classification accuracy was 85.34% for training validation and 92.22% for the testing dataset. Subsequently, an ANOVA test found significant decoding differences among feature combinations. Additionally, no significant difference is found among slope-included feature pairs, skewness-standard deviation, and standard deviation-entropy. The results proved that decoding different muscles related to gait is possible using fNIRS in the future.","PeriodicalId":201841,"journal":{"name":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 11th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER52421.2023.10123845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study is a preliminary step toward gait identification using a non-invasive brain-computer interface. We investigated the feasibility of decoding different active muscles from brain activation using functional near-infrared spectroscopy (fNIRS). A two-section experiment was designed to alternately activate the subjects' hamstring and quadriceps. Nine right-handed subjects, aged $28.1\pm 3.5$, were recruited for the experiment. The measured optical intensities were converted to optical density changes and filtered by targeted principal component analysis (tPCA), a lowpass filter, and a highpass filter sequentially. Six features (slope, skewness, kurtosis, peak-to-peak, standard deviation, and entropy) were extracted from the filtered signals and fed to a linear discriminant analysis (LDA) classifier in pairs. Results showed that using the feature pair of slope-standard deviation, we could achieve a classification rate of more than 80% for all four categories (sitting extension, sitting flexion, standing extension, and standing flexion). The maximum classification accuracy was 85.34% for training validation and 92.22% for the testing dataset. Subsequently, an ANOVA test found significant decoding differences among feature combinations. Additionally, no significant difference is found among slope-included feature pairs, skewness-standard deviation, and standard deviation-entropy. The results proved that decoding different muscles related to gait is possible using fNIRS in the future.