A fast method to analyze and characterize the graphene nanoribbon FET by non-equilibrium Green's function

H. Sarvari, R. Ghayour
{"title":"A fast method to analyze and characterize the graphene nanoribbon FET by non-equilibrium Green's function","authors":"H. Sarvari, R. Ghayour","doi":"10.1109/SMELEC.2010.5549561","DOIUrl":null,"url":null,"abstract":"In this paper, based on the simple Pz orbital model, the energy diagram of armchair and zigzag graphene nanoribbons (A-GNR & Z-GNR) are studied by considering the first and third nearest neighbors (FNN & TNN). Then, we applied the Non-Equilibrium Green Function method to calculate the conduction in A-GNR. Thereafter, we analyzed the single gated GNRFET in real space provided that under any Vgs the energy of all the atoms within the channel remains the same (qVgs) and consequently, solving Poisson's equation is not needed anymore. The numerical calculation of the self-energy matrices is done based on two approaches, where the same result is obtained but different CPU times consumed. Therefore, one of the advantages of our approach is considerably lower consuming time of calculation. The number of atoms across the width of the channel nanoribbon is chosen so that the channel behaves as a semiconductor. However, for the reservoirs (source and drain) the number of atoms within their widths makes them metallic ribbons. The results of applying TNN in comparison with those of FNN show that TNN is more accurate and reliable. Finally, we can conclude that in A-GNRFET tunneling component of the current from reservoir to the channel is significant.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, based on the simple Pz orbital model, the energy diagram of armchair and zigzag graphene nanoribbons (A-GNR & Z-GNR) are studied by considering the first and third nearest neighbors (FNN & TNN). Then, we applied the Non-Equilibrium Green Function method to calculate the conduction in A-GNR. Thereafter, we analyzed the single gated GNRFET in real space provided that under any Vgs the energy of all the atoms within the channel remains the same (qVgs) and consequently, solving Poisson's equation is not needed anymore. The numerical calculation of the self-energy matrices is done based on two approaches, where the same result is obtained but different CPU times consumed. Therefore, one of the advantages of our approach is considerably lower consuming time of calculation. The number of atoms across the width of the channel nanoribbon is chosen so that the channel behaves as a semiconductor. However, for the reservoirs (source and drain) the number of atoms within their widths makes them metallic ribbons. The results of applying TNN in comparison with those of FNN show that TNN is more accurate and reliable. Finally, we can conclude that in A-GNRFET tunneling component of the current from reservoir to the channel is significant.
利用非平衡格林函数快速分析表征石墨烯纳米带场效应管
本文基于简单Pz轨道模型,考虑第一近邻和第三近邻(FNN和TNN),研究了扶手椅型和之字形石墨烯纳米带(A-GNR和Z-GNR)的能量图。然后,我们应用非平衡格林函数法计算了A-GNR中的导通。然后,我们在实际空间中分析了单门控GNRFET,假设在任何Vgs下,通道内所有原子的能量保持不变(qVgs),因此不再需要求解泊松方程。采用两种方法对自能矩阵进行了数值计算,结果相同,但占用的CPU时间不同。因此,我们的方法的优点之一是大大减少了计算时间。选择通道纳米带宽度上的原子数量,使通道表现为半导体。然而,对于储层(源和漏),其宽度内的原子数量使其成为金属带。将TNN与FNN进行比较,结果表明TNN具有更高的准确率和可靠性。最后,我们可以得出结论,在a - gnfet中,从储层到通道的电流隧穿分量是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信