Self-Bäcklund curves in centroaffine geometry and Lamé’s equation

M. Bialy, Gil Bor, S. Tabachnikov
{"title":"Self-Bäcklund curves in centroaffine geometry and Lamé’s equation","authors":"M. Bialy, Gil Bor, S. Tabachnikov","doi":"10.1090/cams/9","DOIUrl":null,"url":null,"abstract":"Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries equation can be realized as an evolution of curves in centroaffine geometry. Since then, a number of authors interpreted various properties of KdV and its generalizations in terms of centroaffine geometry. In particular, the Bäcklund transformation of the Korteweg-de Vries equation can be viewed as a relation between centroaffine curves.\n\nOur paper concerns self-Bäcklund centroaffine curves. We describe general properties of these curves and provide a detailed description of them in terms of elliptic functions. Our work is a centroaffine counterpart to the study done by F. Wegner of a similar problem in Euclidean geometry, related to Ulam’s problem of describing the (2-dimensional) bodies that float in equilibrium in all positions and to bicycle kinematics.\n\nWe also consider a discretization of the problem where curves are replaced by polygons. This is related to discretization of KdV and the cross-ratio dynamics on ideal polygons.","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Twenty five years ago U. Pinkall discovered that the Korteweg-de Vries equation can be realized as an evolution of curves in centroaffine geometry. Since then, a number of authors interpreted various properties of KdV and its generalizations in terms of centroaffine geometry. In particular, the Bäcklund transformation of the Korteweg-de Vries equation can be viewed as a relation between centroaffine curves. Our paper concerns self-Bäcklund centroaffine curves. We describe general properties of these curves and provide a detailed description of them in terms of elliptic functions. Our work is a centroaffine counterpart to the study done by F. Wegner of a similar problem in Euclidean geometry, related to Ulam’s problem of describing the (2-dimensional) bodies that float in equilibrium in all positions and to bicycle kinematics. We also consider a discretization of the problem where curves are replaced by polygons. This is related to discretization of KdV and the cross-ratio dynamics on ideal polygons.
Self-Bäcklund仿心几何中的曲线和lam方程
25年前,U. Pinkall发现Korteweg-de Vries方程可以用仿心几何曲线的演化来实现。从那时起,许多作者解释了KdV的各种性质及其在中心仿射几何方面的推广。特别是,Korteweg-de Vries方程的Bäcklund变换可以看作是中仿射曲线之间的关系。我们的论文关注self-Bäcklund中仿射曲线。我们描述了这些曲线的一般性质,并用椭圆函数对它们进行了详细的描述。我们的工作是F. Wegner在欧几里得几何中对一个类似问题的研究的仿心对应,该问题与Ulam描述在所有位置平衡漂浮的(二维)物体的问题以及自行车运动学有关。我们还考虑了用多边形代替曲线的离散化问题。这与理想多边形上KdV的离散化和交叉比动力学有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信