A hybrid Latent Dirichlet Allocation approach for topic classification

Chi-I Hsu, C. Chiu
{"title":"A hybrid Latent Dirichlet Allocation approach for topic classification","authors":"Chi-I Hsu, C. Chiu","doi":"10.1109/INISTA.2017.8001177","DOIUrl":null,"url":null,"abstract":"Many classification techniques can automatically summarize text into topics and accordingly identify topic terms from the online reviews. Among these techniques Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) are some of the most often employed approaches. LDA is a probability generated model that projects a document into the topic space using Dirichlet Distribution, and each topic is a collection of words of the probability distribution. As the LDA extracted topics are often implicit, this study first applies LDA to examine the topics of online reviews for game apps in a supervised way. To improve the topic classification performance for LDA, this study proposes a hybrid LDA approach to use Genetic Algorithm (GA) in discovering optimal weights for LDA topics.","PeriodicalId":314687,"journal":{"name":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2017.8001177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Many classification techniques can automatically summarize text into topics and accordingly identify topic terms from the online reviews. Among these techniques Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) are some of the most often employed approaches. LDA is a probability generated model that projects a document into the topic space using Dirichlet Distribution, and each topic is a collection of words of the probability distribution. As the LDA extracted topics are often implicit, this study first applies LDA to examine the topics of online reviews for game apps in a supervised way. To improve the topic classification performance for LDA, this study proposes a hybrid LDA approach to use Genetic Algorithm (GA) in discovering optimal weights for LDA topics.
主题分类的混合潜狄利克雷分配方法
许多分类技术可以自动将文本总结为主题,并相应地从在线评论中识别主题术语。在这些技术中,潜在狄利克雷分配(LDA)和潜在语义分析(LSA)是最常用的方法。LDA是一种概率生成模型,它使用Dirichlet分布将文档投影到主题空间中,每个主题都是该概率分布的单词集合。由于LDA提取的主题通常是隐式的,本研究首先以监督的方式将LDA应用于检查游戏应用在线评论的主题。为了提高LDA的主题分类性能,本研究提出了一种混合LDA方法,利用遗传算法(GA)来发现LDA主题的最优权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信