Scaling Cryptographic Techniques by Exploiting Data Sensitivity at a Public Cloud

S. Mehrotra, Shantanu Sharma, J. Ullman
{"title":"Scaling Cryptographic Techniques by Exploiting Data Sensitivity at a Public Cloud","authors":"S. Mehrotra, Shantanu Sharma, J. Ullman","doi":"10.1145/3292006.3302384","DOIUrl":null,"url":null,"abstract":"Despite extensive research on cryptography, secure and efficient query processing over outsourced data remains an open challenge. This poster continues along the emerging trend in secure data processing that recognizes that the entire dataset may not be sensitive, and hence, non-sensitivity of data can be exploited to overcome some of the limitations of existing encryption-based approaches. In particular, this poster outlines a new secure keyword search approach, called query keyword binning (QB) that allows non-sensitive parts of the data to be outsourced in clear-text while guaranteeing that no information is leaked by joint processing of non-sensitive data (in clear-text) and sensitive data (in encrypted form). QB improves the performance of and strengthens the security of the underlying cryptographic technique by preventing size, frequency-count, and workload-skew attacks.","PeriodicalId":246233,"journal":{"name":"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292006.3302384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite extensive research on cryptography, secure and efficient query processing over outsourced data remains an open challenge. This poster continues along the emerging trend in secure data processing that recognizes that the entire dataset may not be sensitive, and hence, non-sensitivity of data can be exploited to overcome some of the limitations of existing encryption-based approaches. In particular, this poster outlines a new secure keyword search approach, called query keyword binning (QB) that allows non-sensitive parts of the data to be outsourced in clear-text while guaranteeing that no information is leaked by joint processing of non-sensitive data (in clear-text) and sensitive data (in encrypted form). QB improves the performance of and strengthens the security of the underlying cryptographic technique by preventing size, frequency-count, and workload-skew attacks.
利用公共云上的数据敏感性来扩展加密技术
尽管对密码学进行了广泛的研究,但对外包数据进行安全和有效的查询处理仍然是一个开放的挑战。这张海报延续了安全数据处理的新兴趋势,即认识到整个数据集可能不敏感,因此,可以利用数据的非敏感性来克服现有基于加密的方法的一些限制。这张海报特别概述了一种新的安全关键字搜索方法,称为查询关键字分组(query keyword binning, QB),它允许将数据的非敏感部分以明文形式外包,同时通过对非敏感数据(以明文形式)和敏感数据(以加密形式)的联合处理,保证不泄露任何信息。通过防止大小、频率计数和工作负载倾斜攻击,QB提高了底层加密技术的性能并加强了安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信