Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data

H. Badr, J. Colston, Nhat-Lan H. Nguyen, Yen-ting Chen, Eleanor M. Burnett, Syed Asad Ali, A. Rayamajhi, S. M. Satter, Nguyen Thi Van Trang, D. Eibach, R. Krumkamp, J. May, A. Adegnika, G. P. Manouana, P. Kremsner, R. Chilengi, L. Hatyoka, A. Debes, J. Ateudjieu, A. Faruque, M. Hossain, S. Kanungo, K. Kotloff, I. Mandomando, M. I. Nisar, R. Omore, S. Sow, A. Zaidi, Nathalie J. Lambrecht, B. Adu, N. Page, J. Platts-Mills, Cesar Mavacala Freitas, T. Pelkonen, P. Ashorn, K. Maleta, T. Ahmed, P. Bessong, Z. Bhutta, C. Mason, E. Mduma, M. Olortegui, Pablo Peñataro Yori, A. Lima, G. Kang, J. Humphrey, R. Ntozini, A. Prendergast, K. Okada, Warawan Wongboot, N. Langeland, S. Moyo, James T Gaensbauer, Mario A. Melgar, M. Freeman, A. Chard, Vonethalom Thongpaseuth, E. Houpt, B. Zaitchik, M. Kosek
{"title":"Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data","authors":"H. Badr, J. Colston, Nhat-Lan H. Nguyen, Yen-ting Chen, Eleanor M. Burnett, Syed Asad Ali, A. Rayamajhi, S. M. Satter, Nguyen Thi Van Trang, D. Eibach, R. Krumkamp, J. May, A. Adegnika, G. P. Manouana, P. Kremsner, R. Chilengi, L. Hatyoka, A. Debes, J. Ateudjieu, A. Faruque, M. Hossain, S. Kanungo, K. Kotloff, I. Mandomando, M. I. Nisar, R. Omore, S. Sow, A. Zaidi, Nathalie J. Lambrecht, B. Adu, N. Page, J. Platts-Mills, Cesar Mavacala Freitas, T. Pelkonen, P. Ashorn, K. Maleta, T. Ahmed, P. Bessong, Z. Bhutta, C. Mason, E. Mduma, M. Olortegui, Pablo Peñataro Yori, A. Lima, G. Kang, J. Humphrey, R. Ntozini, A. Prendergast, K. Okada, Warawan Wongboot, N. Langeland, S. Moyo, James T Gaensbauer, Mario A. Melgar, M. Freeman, A. Chard, Vonethalom Thongpaseuth, E. Houpt, B. Zaitchik, M. Kosek","doi":"10.1101/2022.08.04.22277641","DOIUrl":null,"url":null,"abstract":"Background: Diarrheal disease remains a leading cause of childhood illness and mortality and Shigella is a major etiological contributor for which a vaccine may soon be available. This study aimed to model the spatiotemporal variation in pediatric Shigella infection and map its predicted prevalence across low- and middle-income countries (LMICs). Methods: Independent participant data on Shigella positivity in stool samples collected from children aged [≥]59 months were sourced from multiple LMIC-based studies. Covariates included household- and subject-level factors ascertained by study investigators and environmental and hydrometeorological variables extracted from various data products at georeferenced child locations. Multivariate models were fitted, and prevalence predictions obtained by syndrome and age stratum. Findings: 20 studies from 23 countries contributed 66,563 sample results. Age, symptom status, and study design contributed most to model performance followed by temperature, wind speed, relative humidity, and soil moisture. Shigella probability exceeded 20% when both precipitation and soil moisture were above average and had a 43% peak in uncomplicated diarrhea cases at 33{degrees}C temperatures, above which it decreased. Improved sanitation and open defecation decreased Shigella odds by 19% and 18% respectively compared to unimproved sanitation. Interpretation: The distribution of Shigella is more sensitive to climatological factors like temperature than previously recognized. Conditions in much of sub-Saharan Africa are particularly propitious for Shigella transmission, though hotspots also occur in South and Central America, the Ganges-Brahmaputra Delta, and New Guinea. These findings can inform prioritization of populations for future vaccine trials and campaigns.","PeriodicalId":153380,"journal":{"name":"The Lancet. Global health","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet. Global health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2022.08.04.22277641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Diarrheal disease remains a leading cause of childhood illness and mortality and Shigella is a major etiological contributor for which a vaccine may soon be available. This study aimed to model the spatiotemporal variation in pediatric Shigella infection and map its predicted prevalence across low- and middle-income countries (LMICs). Methods: Independent participant data on Shigella positivity in stool samples collected from children aged [≥]59 months were sourced from multiple LMIC-based studies. Covariates included household- and subject-level factors ascertained by study investigators and environmental and hydrometeorological variables extracted from various data products at georeferenced child locations. Multivariate models were fitted, and prevalence predictions obtained by syndrome and age stratum. Findings: 20 studies from 23 countries contributed 66,563 sample results. Age, symptom status, and study design contributed most to model performance followed by temperature, wind speed, relative humidity, and soil moisture. Shigella probability exceeded 20% when both precipitation and soil moisture were above average and had a 43% peak in uncomplicated diarrhea cases at 33{degrees}C temperatures, above which it decreased. Improved sanitation and open defecation decreased Shigella odds by 19% and 18% respectively compared to unimproved sanitation. Interpretation: The distribution of Shigella is more sensitive to climatological factors like temperature than previously recognized. Conditions in much of sub-Saharan Africa are particularly propitious for Shigella transmission, though hotspots also occur in South and Central America, the Ganges-Brahmaputra Delta, and New Guinea. These findings can inform prioritization of populations for future vaccine trials and campaigns.
儿童志贺氏菌感染风险的时空变化:使用个体参与者数据的全球风险绘图和预测模型
背景:腹泻病仍然是儿童疾病和死亡的主要原因,志贺氏菌是一种主要的病因,疫苗可能很快就会问世。本研究旨在建立儿童志贺氏菌感染的时空变化模型,并绘制其在低收入和中等收入国家(LMICs)的预测患病率。方法:收集[≥]59月龄儿童粪便样本中志贺氏菌阳性的独立参与者数据来自多个基于lmic的研究。协变量包括研究人员确定的家庭和受试者水平的因素,以及从地理参考儿童位置的各种数据产品中提取的环境和水文气象变量。拟合多变量模型,并根据综合征和年龄层进行患病率预测。结果:来自23个国家的20项研究贡献了66,563个样本结果。年龄、症状状态和研究设计对模型性能影响最大,其次是温度、风速、相对湿度和土壤湿度。当降水和土壤湿度均高于平均水平时,志贺氏菌的概率超过20%,在33℃的温度下,无并发症的腹泻病例中,志贺氏菌的概率达到43%的峰值,高于33℃则下降。与未经改善的卫生设施相比,改善的卫生设施和露天排便分别使志贺氏菌的发病率降低了19%和18%。解释:志贺氏菌的分布对温度等气候因素比以前认识到的更为敏感。尽管南美洲和中美洲、恒河-雅鲁藏布江三角洲和新几内亚也出现热点,但撒哈拉以南非洲大部分地区的条件特别有利于志贺氏菌传播。这些发现可以为未来疫苗试验和运动的优先人群提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信