Fast Food Image Recognition using Transfer Learning

Arnav A Rajesh, Madhumita Raghu, J. Sangeetha
{"title":"Fast Food Image Recognition using Transfer Learning","authors":"Arnav A Rajesh, Madhumita Raghu, J. Sangeetha","doi":"10.1109/CCIP57447.2022.10058675","DOIUrl":null,"url":null,"abstract":"Food recognition is a relatively difficult task when compared to traditional image recognition due to the close similarities between different categories of food. We tackle this problem using a Convoluted Neural Network model with and without weights that are pre trained on a much larger dataset. This allows us to utilize a much smaller dataset to fine-tune the weights in order to achieve a higher accuracy in food image recognition. We have compared the accuracy of different Convoluted Neural Network (i.e. VGG16 and AlexNet) models with and without the incorporation of Transfer Learning to correctly classify Fast Food images.","PeriodicalId":309964,"journal":{"name":"2022 Fourth International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Fourth International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP57447.2022.10058675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Food recognition is a relatively difficult task when compared to traditional image recognition due to the close similarities between different categories of food. We tackle this problem using a Convoluted Neural Network model with and without weights that are pre trained on a much larger dataset. This allows us to utilize a much smaller dataset to fine-tune the weights in order to achieve a higher accuracy in food image recognition. We have compared the accuracy of different Convoluted Neural Network (i.e. VGG16 and AlexNet) models with and without the incorporation of Transfer Learning to correctly classify Fast Food images.
快餐图像识别使用迁移学习
与传统的图像识别相比,食物识别是一项相对困难的任务,因为不同类别的食物之间具有密切的相似性。我们使用一个卷积神经网络模型来解决这个问题,这个模型有和没有权重,在一个更大的数据集上进行预训练。这使我们能够利用更小的数据集来微调权重,以便在食品图像识别中获得更高的准确性。我们比较了不同的卷积神经网络(即VGG16和AlexNet)模型在引入和不引入迁移学习的情况下对快餐图像进行正确分类的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信