Adaptive neural filters

L. Yin, J. Astola, Y. Neuvo
{"title":"Adaptive neural filters","authors":"L. Yin, J. Astola, Y. Neuvo","doi":"10.1109/NNSP.1991.239491","DOIUrl":null,"url":null,"abstract":"The authors introduce a new class of nonlinear filters called neural filters based on the threshold decomposition and neural networks. Neural filters can approximate both linear FIR filters and weighted order statistic (WOS) filters which include median, rank order, and weighted median filters. An adaptive algorithm is derived for determining optimal neural filters under the mean squared error (MSE) criterion. Experimental results demonstrate that if the input signal is corrupted by Gaussian noise adaptive neural filters converge to linear filters and if corrupted by impulsive noise, optimal neural filters become WOS filters.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

The authors introduce a new class of nonlinear filters called neural filters based on the threshold decomposition and neural networks. Neural filters can approximate both linear FIR filters and weighted order statistic (WOS) filters which include median, rank order, and weighted median filters. An adaptive algorithm is derived for determining optimal neural filters under the mean squared error (MSE) criterion. Experimental results demonstrate that if the input signal is corrupted by Gaussian noise adaptive neural filters converge to linear filters and if corrupted by impulsive noise, optimal neural filters become WOS filters.<>
自适应神经滤波器
在阈值分解和神经网络的基础上,提出了一类新的非线性滤波器——神经滤波器。神经滤波器可以近似线性FIR滤波器和加权阶统计量(WOS)滤波器,其中包括中值、秩序和加权中值滤波器。在均方误差(MSE)准则下,推导了一种自适应算法来确定最优神经滤波器。实验结果表明,当输入信号被高斯噪声破坏时,自适应神经滤波器收敛到线性滤波器,当输入信号被脉冲噪声破坏时,最优神经滤波器成为WOS滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信