Neural weighted least-squares design of FIR higher-order digital differentiators

Yue-Dar Jou, Fu-Kun Chen, Chao-Ming Sun
{"title":"Neural weighted least-squares design of FIR higher-order digital differentiators","authors":"Yue-Dar Jou, Fu-Kun Chen, Chao-Ming Sun","doi":"10.1109/ICDSP.2009.5201078","DOIUrl":null,"url":null,"abstract":"This paper extends the neural network based algorithm for equiripple design of higher-order digital differentiators in the weighted least-squares sense. The proposed approach formulates an error representation reflecting the difference between the desired amplitude response and the designed response in a Lyapunov error function. The optimal filter coefficients are obtained when neural network achieves convergence. Furthermore, by using a weighted updating function, the proposed method can find a very good approximation of the minimax solution. Simulation results indicate that the proposed technique is able to achieve good performance in a parallelism manner.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper extends the neural network based algorithm for equiripple design of higher-order digital differentiators in the weighted least-squares sense. The proposed approach formulates an error representation reflecting the difference between the desired amplitude response and the designed response in a Lyapunov error function. The optimal filter coefficients are obtained when neural network achieves convergence. Furthermore, by using a weighted updating function, the proposed method can find a very good approximation of the minimax solution. Simulation results indicate that the proposed technique is able to achieve good performance in a parallelism manner.
FIR高阶数字微分器的神经加权最小二乘设计
本文在加权最小二乘意义上扩展了基于神经网络的高阶数字微分器等纹设计算法。所提出的方法在李雅普诺夫误差函数中提出了反映期望振幅响应与设计响应之间差异的误差表示。当神经网络达到收敛时,得到最优滤波系数。此外,通过使用加权更新函数,该方法可以很好地逼近极大极小解。仿真结果表明,该方法能够在并行方式下获得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信