Enabling Energy-Efficient IoT via Learning Assisted Header-Free Communication

Dylan Wheeler, B. Natarajan
{"title":"Enabling Energy-Efficient IoT via Learning Assisted Header-Free Communication","authors":"Dylan Wheeler, B. Natarajan","doi":"10.1109/WF-IoT51360.2021.9595651","DOIUrl":null,"url":null,"abstract":"With millions of connected devices expected to proliferate across multiple application domains, energy efficiency is a critical factor in IoT solutions. This paper aims to enhance the energy efficiency of networked IoT sensors by transitioning to a header-free communication framework. Novel enhancements to the reception technique based on the stochastic expectation maximization algorithm are proposed. Specifically, in contrast to prior efforts, a combination of compressive sensing principles along with deep learning methodologies are used to improve the performance of header-free sensor communications. Using simulation results, performance & complexity gains relative to the classic approach of up to 95% and 99%, respectively, are achieved.","PeriodicalId":184138,"journal":{"name":"2021 IEEE 7th World Forum on Internet of Things (WF-IoT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th World Forum on Internet of Things (WF-IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WF-IoT51360.2021.9595651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With millions of connected devices expected to proliferate across multiple application domains, energy efficiency is a critical factor in IoT solutions. This paper aims to enhance the energy efficiency of networked IoT sensors by transitioning to a header-free communication framework. Novel enhancements to the reception technique based on the stochastic expectation maximization algorithm are proposed. Specifically, in contrast to prior efforts, a combination of compressive sensing principles along with deep learning methodologies are used to improve the performance of header-free sensor communications. Using simulation results, performance & complexity gains relative to the classic approach of up to 95% and 99%, respectively, are achieved.
通过学习辅助的无标头通信实现节能物联网
随着数以百万计的连接设备在多个应用领域的激增,能源效率是物联网解决方案的关键因素。本文旨在通过过渡到无报头通信框架来提高联网物联网传感器的能源效率。提出了基于随机期望最大化算法的接收技术改进方案。具体来说,与之前的努力相比,压缩感知原理与深度学习方法的结合用于提高无报头传感器通信的性能。使用仿真结果,相对于经典方法,性能和复杂性分别提高了95%和99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信