Perturbation-Based Best Arm Identification for Efficient Task Planning with Monte-Carlo Tree Search

Daejong Jin, Juhan Park, Kyungjae Lee
{"title":"Perturbation-Based Best Arm Identification for Efficient Task Planning with Monte-Carlo Tree Search","authors":"Daejong Jin, Juhan Park, Kyungjae Lee","doi":"10.1109/ICRA48891.2023.10161169","DOIUrl":null,"url":null,"abstract":"Combining task and motion planning (TAMP) is crucial for intelligent robots to perform complex and long-horizon tasks. In TAMP, many approaches generally employ Monte-Carlo tree search (MCTS) with upper confidence bound (UCB) for task planning to handle exploration-exploitation trade-off and find globally optimal solutions. However, since UCB basically considers the estimation error caused by noise, the error caused by insufficient optimization of the sub-tree is not represented. Hence, UCB-based approaches have the disadvantage of not exploring underestimated sub-trees. To alleviate this issue, we propose a novel tree search method using perturbation-based best-arm identification (PBAI). We theoretically prove the bound of the simple regret of our method and empirically verify that PBAI finds the optimal task plans faster and more efficiently than the existing algorithms. The source code of our proposed algorithm is available at https://github.com/jdj2261/pytamp.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Combining task and motion planning (TAMP) is crucial for intelligent robots to perform complex and long-horizon tasks. In TAMP, many approaches generally employ Monte-Carlo tree search (MCTS) with upper confidence bound (UCB) for task planning to handle exploration-exploitation trade-off and find globally optimal solutions. However, since UCB basically considers the estimation error caused by noise, the error caused by insufficient optimization of the sub-tree is not represented. Hence, UCB-based approaches have the disadvantage of not exploring underestimated sub-trees. To alleviate this issue, we propose a novel tree search method using perturbation-based best-arm identification (PBAI). We theoretically prove the bound of the simple regret of our method and empirically verify that PBAI finds the optimal task plans faster and more efficiently than the existing algorithms. The source code of our proposed algorithm is available at https://github.com/jdj2261/pytamp.
基于扰动的蒙特卡罗树搜索任务规划最佳臂辨识
任务与运动规划相结合是智能机器人完成复杂、长视距任务的关键。在TAMP中,许多方法通常采用蒙特卡罗树搜索(MCTS)和上置信度界(UCB)来进行任务规划,以处理探索-开发权衡并找到全局最优解。但由于UCB基本考虑了噪声引起的估计误差,因此没有表示子树优化不足引起的误差。因此,基于ucb的方法的缺点是不能探索被低估的子树。为了解决这个问题,我们提出了一种新的基于扰动的最佳臂识别(PBAI)树搜索方法。我们从理论上证明了该方法的简单遗憾边界,并通过经验验证了PBAI比现有算法更快、更有效地找到最优任务计划。我们提出的算法的源代码可在https://github.com/jdj2261/pytamp上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信